

# The MUSE Data Reduction Software Manual

TANYA URRUTIA OLE STREICHER PETER WEILBACHER CHRISTER SANDIN

June 4, 2020



# Contents

| 1 | Intr                           | ntroduction                              |    |  |  |  |  |  |  |  |  |
|---|--------------------------------|------------------------------------------|----|--|--|--|--|--|--|--|--|
|   | 1.1                            | Scope of this Document                   | 4  |  |  |  |  |  |  |  |  |
|   | 1.2                            | Stylistic Conventions                    | 4  |  |  |  |  |  |  |  |  |
|   | 1.3                            | Abbreviations and Acronymns              | 4  |  |  |  |  |  |  |  |  |
| 2 | Inst                           | Instrument and Data Design               |    |  |  |  |  |  |  |  |  |
|   | 2.1                            | The MUSE Instrument                      | 6  |  |  |  |  |  |  |  |  |
|   | 2.2                            | Data Layout                              | 6  |  |  |  |  |  |  |  |  |
| 3 | MU                             | SE Pipeline Installation                 | 10 |  |  |  |  |  |  |  |  |
|   | 3.1                            | Installation of Python-CPL               | 10 |  |  |  |  |  |  |  |  |
| 4 | Pip                            | Pipeline and Recipe Description 12       |    |  |  |  |  |  |  |  |  |
|   | 4.1                            | Recipe Description                       | 12 |  |  |  |  |  |  |  |  |
| 5 | Reduction Cookbook - EsoRex 15 |                                          |    |  |  |  |  |  |  |  |  |
|   | 5.1                            | Basic Reduction                          | 16 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.1 Identification of raw input files  | 17 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.2 Bias                               | 17 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.3 Dark                               | 18 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.4 Flat and Trace Table               | 19 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.5 Wavelength Calibration             | 20 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.6 LSF calculation                    | 21 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.7 Instrument Geometry                | 22 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.8 Twilight                           | 24 |  |  |  |  |  |  |  |  |
|   |                                | 5.1.9 Basic science processing           | 25 |  |  |  |  |  |  |  |  |
|   | 5.2                            | Post-Processing                          | 26 |  |  |  |  |  |  |  |  |
|   |                                | 5.2.1 Standard Star and Flux Calibration | 27 |  |  |  |  |  |  |  |  |
|   |                                | 5.2.2 Astrometry                         | 28 |  |  |  |  |  |  |  |  |
|   |                                | 5.2.3 Sky Creation and Subtraction       | 29 |  |  |  |  |  |  |  |  |



|   |     | 5.2.4                                                                          | Science Post-Processing and Final Datacube                                                                |                                                                                                |  |  |
|---|-----|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
|   |     | 5.2.5                                                                          | Combine Exposures                                                                                         | 34                                                                                             |  |  |
| 6 | Rec | luctior                                                                        | n Cookbook - Python-CPL                                                                                   | 35                                                                                             |  |  |
| Ŭ | 6.1 | Basic                                                                          | Reduction                                                                                                 | 36                                                                                             |  |  |
|   | 0.1 | 6.1.1                                                                          | Identification of raw input files                                                                         | 36                                                                                             |  |  |
|   |     | 6.1.2                                                                          | Bias                                                                                                      | 37                                                                                             |  |  |
|   |     | 6.1.3                                                                          | Dark                                                                                                      | 38                                                                                             |  |  |
|   |     | 6.1.4                                                                          | Flat and Trace Table                                                                                      | 38                                                                                             |  |  |
|   |     | 6.1.5                                                                          | Wavelength Calibration                                                                                    | 39                                                                                             |  |  |
|   |     | 6.1.6                                                                          | LSF calculation                                                                                           | 40                                                                                             |  |  |
|   |     | 6.1.7                                                                          | Instrument Geometry                                                                                       | 40                                                                                             |  |  |
|   |     | 6.1.8                                                                          | Skyflat                                                                                                   | 42                                                                                             |  |  |
|   |     | 6.1.9                                                                          | Basic science processing                                                                                  | 43                                                                                             |  |  |
|   | 6.2 | Post-I                                                                         | Processing                                                                                                | 43                                                                                             |  |  |
|   |     | 6.2.1                                                                          | Standard Star and Flux Calibration                                                                        | 44                                                                                             |  |  |
|   |     | 6.2.2                                                                          | Astrometry                                                                                                | 46                                                                                             |  |  |
|   |     | 6.2.3                                                                          | Sky Creation and Subtraction                                                                              | 47                                                                                             |  |  |
|   |     | 6.2.4                                                                          | Science Post-Processing and Final Datacube                                                                | 47                                                                                             |  |  |
|   |     | 6.2.5                                                                          | Combine Exposures                                                                                         | 50                                                                                             |  |  |
| 7 | Rec | vine Pa                                                                        | arameters                                                                                                 | 52                                                                                             |  |  |
| • | 7.1 | Pre-pr                                                                         | rocessing recipes                                                                                         | 52                                                                                             |  |  |
|   |     | 7.1.1                                                                          | muse bias                                                                                                 | 52                                                                                             |  |  |
|   |     | 7.1.2                                                                          | muse dark                                                                                                 | 54                                                                                             |  |  |
|   |     | 7.1.3                                                                          | muse flat                                                                                                 | 56                                                                                             |  |  |
|   |     | 7.1.4                                                                          | muse wavecal                                                                                              | 59                                                                                             |  |  |
|   |     | 7.1.5                                                                          |                                                                                                           | co                                                                                             |  |  |
|   |     |                                                                                | muse isi                                                                                                  | 62                                                                                             |  |  |
|   |     | 7.1.6                                                                          | muse_isi       muse_twilight                                                                              | 62<br>64                                                                                       |  |  |
|   |     | 7.1.6<br>7.1.7                                                                 | muse_twilight          muse_geometry                                                                      | 62<br>64<br>68                                                                                 |  |  |
|   |     | 7.1.6<br>7.1.7<br>7.1.8                                                        | muse_isi          muse_twilight          muse_geometry          muse_scibasic                             | 62<br>64<br>68<br>70                                                                           |  |  |
|   | 7.2 | 7.1.6<br>7.1.7<br>7.1.8<br>Post-p                                              | muse_isi          muse_twilight          muse_geometry          muse_scibasic          processing recipes | <ul> <li>62</li> <li>64</li> <li>68</li> <li>70</li> <li>73</li> </ul>                         |  |  |
|   | 7.2 | 7.1.6<br>7.1.7<br>7.1.8<br>Post- <sub>I</sub><br>7.2.1                         | muse_isit                                                                                                 | <ul> <li>62</li> <li>64</li> <li>68</li> <li>70</li> <li>73</li> <li>73</li> </ul>             |  |  |
|   | 7.2 | 7.1.6<br>7.1.7<br>7.1.8<br>Post- <sub>H</sub><br>7.2.1<br>7.2.2                | muse_isi                                                                                                  | <ul> <li>62</li> <li>64</li> <li>68</li> <li>70</li> <li>73</li> <li>73</li> <li>76</li> </ul> |  |  |
|   | 7.2 | 7.1.6<br>7.1.7<br>7.1.8<br>Post- <sub>F</sub><br>7.2.1<br>7.2.2<br>7.2.3       | muse_isit                                                                                                 | 62<br>64<br>68<br>70<br>73<br>73<br>73<br>76<br>78                                             |  |  |
|   | 7.2 | 7.1.6<br>7.1.7<br>7.1.8<br>Post-p<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.4          | muse_isit                                                                                                 | 62<br>64<br>68<br>70<br>73<br>73<br>73<br>76<br>78<br>80                                       |  |  |
|   | 7.2 | 7.1.6<br>7.1.7<br>7.1.8<br>Post-p<br>7.2.1<br>7.2.2<br>7.2.3<br>7.2.4<br>7.2.5 | muse_isit                                                                                                 | 62<br>64<br>68<br>70<br>73<br>73<br>73<br>76<br>78<br>80<br>87                                 |  |  |



| 8 | Tips | os & Troubleshooting                            |     |  |  |  |  |  |  |  |
|---|------|-------------------------------------------------|-----|--|--|--|--|--|--|--|
|   | 8.1  | The output of the logfile                       | 93  |  |  |  |  |  |  |  |
|   | 8.2  | Restricting wavelength ranges                   | 93  |  |  |  |  |  |  |  |
|   | 8.3  | Debugging options                               | 93  |  |  |  |  |  |  |  |
|   | 8.4  | Tools for debugging and verification            | 94  |  |  |  |  |  |  |  |
|   |      | 8.4.1 Verification of the tracing solution      | 94  |  |  |  |  |  |  |  |
|   |      | 8.4.2 Verification of the wavelength solution   | 96  |  |  |  |  |  |  |  |
|   |      | 8.4.3 Handling of MUSE pixel tables             | 97  |  |  |  |  |  |  |  |
|   |      | 8.4.4 Handling of MUSE bad pixel maps           | 99  |  |  |  |  |  |  |  |
|   |      | 8.4.5 Tools to deal with (partial) output cubes | 100 |  |  |  |  |  |  |  |
|   |      | 8.4.6 Other tools                               |     |  |  |  |  |  |  |  |
|   | 8.5  | Typical failure cases                           |     |  |  |  |  |  |  |  |
|   |      | 8.5.1 Failed tracing                            | 103 |  |  |  |  |  |  |  |
|   | 8.6  | Correcting coordinate offsets                   |     |  |  |  |  |  |  |  |
|   | 8.7  | Correcting relative fluxes                      | 104 |  |  |  |  |  |  |  |
|   | 8.8  | Ticket system                                   |     |  |  |  |  |  |  |  |
| ٨ | Det  | a Format Description                            | 106 |  |  |  |  |  |  |  |
| A | Dat  | ta Format Description 10                        |     |  |  |  |  |  |  |  |
|   | A.1  | Data Formats                                    | 106 |  |  |  |  |  |  |  |
|   |      | A.1.1 Raw Data Files                            | 106 |  |  |  |  |  |  |  |
|   |      | A.1.2 Static Calibration Files                  | 108 |  |  |  |  |  |  |  |
|   |      | A.1.3 Recipe Product Files                      | 113 |  |  |  |  |  |  |  |
|   |      | A.1.4 Other Data files                          | 129 |  |  |  |  |  |  |  |



# Chapter 1

# Introduction

# 1.1 Scope of this Document

This document contains information that lets users reduce raw MUSE data into finished, science-ready datacubes using the MUSE Data Reduction Software (DRS, also called *the pipeline*) developed at AIP. It is designed as a User Manual for people in the MUSE consortium. Currently, it is not foreseen that scientific end users will work with this manual. However, to learn of the recipes and the processes happening behind the scenes, this document might be of interest to all people working with MUSE data. The final pipeline provided by ESO may contain parts of this cookbook. The overall MUSE data reduction procedure and recipes are described in Chapter 4. It is foreseen that the person performing the reduction will be able to do this with the standard settings following the cookbook instructions referenced in Chapter 5, using EsoRex; this is also the preferred way of ESO to reduce the data. If you are more comfortable working with Python, you might be interested in using the Python-CPL interface described in Chapter 6 after reading about the EsoRex reduction. This package is a module that calls the CPL recipes that are described in Chapter 5, the data then are already in a format that are easily handled by Astropy or your favorite Python recipes. Recipe options and corresponding parameters are described in Chapter 7, to allow the user to configure his/her EsoRex or Python CPL script to his/her liking.

Note that the MUSE data reduction is very resource intensive on your computer architecture, especially on memory. It is not recommended that data be reduced on personal computer, rather a multi-core workstation with at the very least 32 GB RAM is recommended. However, for the end-cube combination a machine with at least 150 GB RAM is needed.

## 1.2 Stylistic Conventions

muse bias is a recipe of the MUSE pipeline. MUSE functions within the code will be treated equally.

/home/user> esorex muse\_bias bias.sof is a command line prompt command or a part of a code. Arguments within the code will be treated equally. It is assumed that the the reductions are made in the working directory, '/home/user' is merely a placeholder for the purposes of this document.

*Note: "something important"* is an author's note, either indicating that something will likely change or as a reminder of implementation and/or merging of the section with the DRS pipeline design document.

## 1.3 Abbreviations and Acronymns



| Short  | Long                              |
|--------|-----------------------------------|
| AO     | Adaptive Optics                   |
| ADU    | Analogue to Digital Unit          |
| CCD    | Charge-Coupled Device             |
| CPL    | Common Pipeline Library           |
| DRS    | Data Reduction Pipeline           |
| ESO    | European Southern Observatory     |
| EsoRex | ESO Recipe Execution Tool         |
| FITS   | Flexible Image Transfer System    |
| FWHM   | Full Width Half Maximum           |
| FOV    | field of view                     |
| GCC    | GNU Compiler Collection           |
| IFU    | Integral Field Unit               |
| LSF    | Line Spread Function              |
| MUSE   | Multi Unit Spectroscopic Explorer |
| NFM    | Narrow Field Mode                 |
| pixel  | picture element (in an image)     |
| PSF    | Point Spread Function             |
| spaxel | spatial element (of a datacube)   |
| QC     | Quality Control (parameters)      |
| WCS    | World Coordinate System           |
| WFM    | Wide Field Mode                   |
| voxel  | volume element (in a datacube)    |

Table 1.1: List of Acronymns



# Chapter 2

# Instrument and Data Design

## 2.1 The MUSE Instrument

MUSE is an optical wide-field integral field spectrograph that uses the image slicing technique to cover a field of view (FOV) of 1' x 1' in wide-field mode (WFM) with a spatial resolution of  $0.2 \times 0.2$ ". The full field is split up into 24 sub-fields (each 2.5" x 60" in WFM) which are fed into the 24 integral field units (IFUs) of the instrument. Each IFU illuminates a 4k x 4k CCD by separating the incoming light into 48 slices. For each exposure, one FITS file with 24 extensions (on for each MUSE IFU) is written to disk, which is merged in advance by the instrument control software.

In addition to the WFM, a narrow-field mode (NFM) is possible with a FOV of  $7.5 \times 7.5$ " with a spatial resolution of  $0.025 \times 0.025$ ". The resulting layout is identical at the CCD level; the only difference in the data reduction is the different scale on the sky.

MUSE has a single spectrograph setup that covers the wavelength range 480-930 nm, at a resolution of R=3000. It is modulated only by the possible use of two filters. One is a notch filter that suppresses the wavelength region about thevNaD line at 589 nm; this is used during AO assisted observations. The second filter cuts off light in the blue part of the spectrum. This filter is used by default, but can be removed to gain access to the wavelength range 465-480 nm, at the expense of second-order overlap in the red part.

## 2.2 Data Layout

Figures 2.2 and 2.3 show the display of the raw image of one CCD, i.e. one of the 24 MUSE IFUs. In Figure 2.2 the presented data show a continuum flat-field exposure at IFU 19, while Figure 2.3 shows a standard star exposure at IFU 2. While one can clearly see the object traces on the slices, most of the field is empty, so that the sky spectrum dominates. Slices are approximately 76.5 pixel wide bands on the detector; the bands are separated by about 6 pixels, and are slightly curved outwards at the edges (where the deviation reaches up to 2 pixels). The bands are offset in wavelength, forming a pattern of three steps, overlaid with a curvature across the CCD, so that the wavelength coverage in each slice is different.

Read-out of the MUSE detectors is organized in a 4-port setup, where four quadrants of equal size are written for each CCD. On each chip, the vertical axis (the columns) is the dispersion direction, with the blue end of the spectrum at the lower edge. The horizontal axis (the rows) is the spatial direction. The vertical/horizontal and column/row denotation will be used in this sense throughout the document when referring to CCD positions.





Figure 2.1: Graphical representations of the splitting and slicing procedures in the MUSE instrument. The example shown is for the wide-field mode; narrow-field mode operates in the same way with a scaled-down field size. Note that the sizes are approximate, real data do not exactly cover a square region on the sky.





Figure 2.2: Flat-field for one CCD (IFU 19), intensity is coded in non-linear gray scale. Wavelength direction is vertical (red at the top).





Figure 2.3: Raw on-sky data, showing one CCD of a 120s standard star exposure in negative linear greyscale. The bright star was located in the left part of the field of view. Dispersion direction is vertical (red at the top). The continuum of the star is seen as vertical stripes and the sky emission lines as horizontal dark stripes.



# Chapter 3

# **MUSE** Pipeline Installation

The MUSE pipeline is delivered as one single tarball muse-kit-2.8.3.tar.bz2. This tarball contains everything that is needed to install it on a recent Linux system, including the code tarball, a tarball with calibrations, some library dependencies, this manual, and a README file. To install, just unpack the kit into a directory and issue the following command

/home/user/muse-kit-2.8.3> ./install\_pipeline

and follow the instructions.

In case you want to install only the code, unpack the muse-2.8.3.tar.bz2 (from inside the kit) and look into the README in that tarball for instructions.

## 3.1 Installation of Python-CPL

If you want to call the MUSE pipeline from Python, you can use the optional Python-CPL package that comes with the source code, see the subdirectory muse-2.8.3/python/). Alternatively, the source code may be downloaded from the Python Package Index web page (https://pypi.python.org/packages/source/p/python-cpl/) or accessed through its git repository. The latter option is preferred, as it ensures that you will get the latest version of the module. Issue the following command to get the source code from the repository:

/home/user> git clone git://github.com/olebole/python-cpl.git

This creates a subdirectory named python-cpl/ with the most recent version of the module. To update to the current version of an existing repository, issue the command git pull in the python-cpl/ directory. The Python-CPL module has the following prerequisites to work correctly:

- Python 2.6, 2.7, 3.3, or 3.4
- Astropy (http://www.astropy.org/) or Pyfits (http://www.pyfits.org). Note that the latter is deprecated.

In the source directory, compile the package with the following command:

/home/user/python-cpl> python setup.py install --prefix=PREFIX



The prefix option denotes an optional installation path of the program; as a default the directory /usr/local/ is used. If you change it, make sure zou add the directory PREFIX/lib/python2.7/site-packages/ (or PREFIX/lib64/python2.7/site-packages/ on 64 bit systems) to your environment variable PYTHONPATH, where PREFIX is the installation path for the package. The Python-CPL module is now installed and you can continue with the cookbook in Section 6!

As an optional step, you can now execute some tests to see if the module was installed correctly. Issue the following commands to initiate the tests:

/home/user/python-cpl> cd test/
/home/user/python-cpl/test> python TestRecipe.py

The program will then run a variety of tests, which hopefully all pass. The tests may print a memory corruption detection by glibc. This is normal, since the tests also check the behavior of this behavior in the recipe.



# Chapter 4

# Pipeline and Recipe Description

The main MUSE pipeline is divided into several calibration recipes (handling both instrument-internal and on-sky calibration data), and two main science reduction recipes. Each of these recipes is composed of a few up to many functions implemented in the MUSE data-reduction library. At the moment, the layout into a few high-level recipes is geared towards a user who reduces data mostly automatically using esorex. Given the data volume and data complexity of MUSE, several steps during data reduction can take a long time. It is assumed the automated approach, which is based on a few recipes, will therefore be the most used reduction mode. Some additional recipes exist that allow a more finegrained step-by-step reduction, but these are not yet well enough tested and are not documented here.

The data processing is split into two parts: 1. the basic reduction including calibrations, which works on the basis of single CCDs and determines and/or removes the signature of each IFU, and 2. a set of recipes that post-process the pre-reduced data into useful scientific output, thereby working on data of all CCDs of one or more exposures. In this part of the process, the pipeline works with pixel tables before combining them to a final Datacube. The two different parts are visually decomposed into the recipes in Figures 4.1 and 4.2.

# 4.1 Recipe Description

This section will give a basic description of the algorithms used in each recipe. To be done concurrently with the MUSE pipeline paper by P. Weilbacher.





Figure 4.1: Association map for the basic science data reduction. This diagram shows the part of the pipeline that operates on the basis of a single IFU.





Figure 4.2: Association map for the second part of the science data reduction. This part of the pipeline deals with data of all 24 IFUs simultaneously; data in this diagram start with PIXTABLE\_type just as the output data that are shown in the association map in Figure 4.1.



# Chapter 5

# Reduction Cookbook - EsoRex

EsoRex is a powerful parser that allows you to call a given recipe with a *set of frames* (sof) as input parameters (see below). Moreover, you can pass values to the different parameters of each recipe via command line options or via a configuration file. Any information on EsoRex that is beyond the scope of this cookbook can be gained from the EsoRex web pages (http://www.eso.org/sci/software/cpl/esorex.html). Make sure that EsoRex is in your executable path; when you install it, you could also set up an alias such as:

#### alias esorex=\${ESOREX\_DIR}/bin/esorex

in your setup file (.tcshrc or similar). To set up your EsoRex configuration file after installation, please issue:

```
/home/user> esorex --create-config
```

Make sure that the created configuration file ( $\sim$ /.esorex/esorex.rc) contains at least the line:

```
esorex.caller.recipe-dir=${MUSE_DIR}
```

so that the recipes are found and executed.

Recipes are usually called with EsoRex as follows:

/home/user> esorex [esorex-options] [recipe [recipe-options] [sof]]

Notice that after the command itself, all the command-line arguments are grouped according to their function. The EsoRex options come first. The command

/home/user> esorex --help

lists all the command-line options for the EsoRex application itself. The recipe may optionally be specified. The command

#### /home/user> esorex --help recipe

gives you the help screen on any recipe. The relevant recipes and their options for MUSE are listed in Chapter 7.



Any command line options for the recipe itself are specified following the recipe name and a sof file. (Note that it is possible to list several sof files, in which case EsoRex will treat them as if they were appended in a single file.)

A sof (set of files) file contains a list of the input data in plain text format, where each input file is specified with its associated classification and category. The format of each line in the sof file is as follows:

full-path-to-file classification

where the different classifications are specified below. You need to create these sof files either manually with your favorite text editor (e.g. emacs or vi), or they need to be created within a script. For the purposes of this document, we assume that the user has already created these sof files and they already contain all the relevant information. An example MUSE sof file might look like this:

```
/home/user/data/raw/MUSE.2013-12-26T01:05:06.233.fits OBJECT
/home/user/data/cal/MASTER_BIAS.fits MASTER_BIAS
/home/user/data/cal/MASTER_FLAT.fits MASTER_FLAT
/home/user/data/cal/WAVECAL_TABLE WAVECAL_TABLE
/home/user/data/cal/geometry_table.fits GEOMETRY_TABLE
```

Screenshots of the results are shown throughout the cookbook. The program DS9 (http://hea-www.harvard.edu/RD/ds9/site/Home.html) was used to this purpose, but you are welcome to use any other FITS viewer, such as Skycat, QFitsView, etc..

The MUSE pipeline generates a lot of files and also requires quite a lot of setup. As such it is helpful to organize files into subdirectories. In the following cookbook, raw files are in their own directory category (e.g. raw/bias/ or raw/std/). Auxiliary files that belong to the reduction (also called "static" calibrations), e.g. the arc-lamp linelist or the Paranal extinction table are shipped with the pipeline and usually get installed in a directory called cal/. Log files are also stored in their own directory named LOGs/, and sof files are moved to the SOFs/ directory after they are used. You will see that the Cookbook scripts move the log files to the LOGs directory, which is why before running them, you should create it or adjust the scripts to your liking.

/home/user> mkdir LOGs /home/user> mkdir SOFs

As mentioned in Chapter 4, the data processing is split into two parts: 1. the basic reduction including calibrations, which works on the basis of single CCDs and determines and/or removes the signature of each IFU and 2. a set of recipes to postprocess the pre-reduced data into useful scientific output, thereby working on data of all CCDs of one or more exposures. These parts are decomposed in this cookbook in Sections 5.1 and 5.2 for clarity.

If you should find that something does not work and you have access to the gitlab at CRAL (https://git-cral.univ-lyon1.fr/MUSE/DRS/issues), please create ticket describing the nature of the problem and the version of the pipeline and the manual you are using.

### 5.1 Basic Reduction

The basic reduction sets up all parameters for the subsequent science reductions. Many master files (such as the master dark or the trace table), which will be applied over and over again, are generated during this stage of the reduction. Calibration recipes are executed on the basis of a single CCD, on an IFU per IFU basis.



### 5.1.1 Identification of raw input files

The name of the raw files are the usual ESO archive format: MUSE. *dateTtime.fits.fz*, where the precision of the time stamps is specified in milliseconds. Date and time stamps are derived from the date and time of the observation (exposure start), which is also stored in the header field DATE-OBS, e.g.

MUSE.2013-07-11T15:31:00.014.fits.fz

If present, the fz extension signifies that a file was compressed using the FITS tiled image compression convention<sup>1</sup>. The headers of such a file can be studied as usual for any other uncompressed FITS file, and in particular can be directly given to the MUSE pipeline without prior decompression.

The primary identification of raw input files is done using the keywords HIERARCH ESO DPR CATG and HIERARCH ESO DPR TYPE from the FITS header. See section A.1.1 for the list of possible input frames and header keywords. The Python script from section 6.1.1 can be used to sort a given list of input files in the working directory into subdirectories according to their input frame type. Other interesting keywords are HIERARCH ESO INS MODE and HIERARCH ESO DET READ CURNAME.

In the following tutorial we assume that files are sorted into subdirectories like it is done with this script.

#### 5.1.2 Bias

We combine a set of raw bias frames into one master-bias file that is used throughout the subsequent reduction.

```
/home/user> cat bias01.sof
    raw/bias/MUSE.2014-02-11T20:31:00.123.fits BIAS
    raw/bias/MUSE.2014-02-11T20:32:07.031.fits BIAS
    raw/bias/MUSE.2014-02-11T20:33:12.932.fits BIAS
    raw/bias/MUSE.2014-02-11T20:34:18.689.fits BIAS
    raw/bias/MUSE.2014-02-11T20:35:25.162.fits BIAS
    raw/bias/MUSE.2014-02-11T20:35:25.162.fits BIAS
    /home/user> esorex muse_bias --nifu=1 bias01.sof
    /home/user> mv esorex.log LOGs/bias01.log
    /home/user> mv bias01.sof SOFs/bias01.sof
```

This can be repeated for each IFU manually or using a script as shown below. At least three raw bias frames are needed in the sof file for this recipe to work correctly. The final product created with this recipe is MASTER\_BIAS-[xx].fits, where [xx] is the IFU number specified with the --nifu option.

```
#!/bin/bash
for ifu in {01..24} ; do
    esorex muse_bias --nifu=${ifu} bias${ifu}.sof 2>&1 | \
        tee LOGs/bias${ifu}.log &
        sleep 5s
done ; wait
```

See section 7.1.1 for a full description of the **muse** bias recipe.

<sup>&</sup>lt;sup>1</sup>See http://fits.gsfc.nasa.gov/registry/tilecompression.html.



| 🗙 💿                                                            |                |         |               |             |            | SAOImage o | ds9 <3>           |       |        |      |        |        | $\odot$ $\odot$ $\otimes$ |
|----------------------------------------------------------------|----------------|---------|---------------|-------------|------------|------------|-------------------|-------|--------|------|--------|--------|---------------------------|
| File Edi                                                       | it View        | r Frame | Bin Zoom      | Scale Color | Region WCS | Analysis   |                   |       |        |      |        |        | Help                      |
| File<br>Object<br>Value<br>WCS<br>Physical<br>Image<br>Frame 1 | X<br>X<br>Zoom | MASTER_ | BIAS031.fits[ | DATA]       |            |            |                   |       |        |      | Ĵ      | ××     |                           |
| file                                                           | [              | edit    | view          | frame       | bin        | zoon       | ו<br>ו            | scale | cole   | or ( | region | wcs    | : help                    |
| -                                                              | +              |         | to fit        | zoom 1/8    | zoom 1/4   |            | zoom 1 <i>1</i> 2 |       | zoom 1 | zo   | om 2   | zoom 4 | zoom 8                    |
|                                                                |                |         |               |             |            |            |                   |       |        |      |        |        |                           |
| 1120                                                           | )              | 1140    |               | 1160        | 1180       | 1200       |                   | 1220  | 12     | 240  | 1260   | )      | 1280                      |

Figure 5.1: Example of a MASTER-BIAS file for one IFU.

### 5.1.3 Dark

We combine a set of dark frames into one master-dark file. This procedure also locates bad pixels. Note that since the current of modern CCDs is small, the master-dark frame itself is unlikely to be used further. However, the bad pixel file can be useful for the rest of the reductions.

```
/home/user> cat dark01.sof
    raw/dark/MUSE.2014-02-11T20:42:24.014.fits DARK
    raw/dark/MUSE.2014-02-11T21:03:31.876.fits DARK
    raw/dark/MUSE.2014-02-11T21:34:31.374.fits DARK
    MASTER_BIAS-01.fits MASTER_BIAS
/home/user> esorex muse_dark --nifu=1 dark01.sof
/home/user> mv esorex.log LOGs/dark01.log
```



/home/user> mv dark01.sof SOFs/dark01.sof

As above, the commands can be issued for each IFU manually or script it as below. At least 3 raw dark frames are needed in the sof file for the reductions to work. The final product created here is called MASTER\_DARK-[xx].fits, again the [xx] representing the IFU number currently being worked on.

```
#!/bin/bash
for ifu in {01..24} ; do
    esorex muse_dark --nifu=${ifu} dark${ifu}.sof 2>&1 | \
        tee LOGs/dark${ifu}.log &
        sleep 5s
done ; wait
```

See section 7.1.2 for a full description of the **muse** dark recipe.

#### 5.1.4 Flat and Trace Table

We combine a set of raw flat frames into one master-flat file. The procedure also locates and traces the slice locations and dark pixels.

```
/home/user> cat flat01.sof
    raw/flat/MUSE.2014-02-11T20:34:42.493.fits FLAT
    raw/flat/MUSE.2014-02-11T20:34:52.940.fits FLAT
    raw/flat/MUSE.2014-02-11T20:35:03.086.fits FLAT
    MASTER_BIAS-01.fits MASTER_BIAS
    MASTER_DARK-01.fits MASTER_DARK
/home/user> esorex muse_flat --nifu=1 --samples flat01.sof
/home/user> mv esorex.log LOGs/flat01.log
/home/user> mv flat01.sof SOFs/flat01.sof
```

Note that the --samples parameter is not necessary, but it is convenient to have the extra TRACE\_SAMPLES table, in case one needs to debug tracing failures (see Sect. 8.4.1).

Once again, you can run this manually for each IFU or script the process as shown below. Note that at least three raw flat frames are needed for the recipe **muse flat** to work.

```
#!/bin/bash
for ifu in {01..24} ; do
    esorex muse_flat --nifu=${ifu} --samples flat${ifu}.sof 2>&1 | \
        tee LOGs/flat${ifu}.log &
        sleep 5s
done ; wait
```

See section 7.1.3 for a full description of the **muse** flat recipe.





Figure 5.2: Example of a view of a MASTER-FLAT for one IFU.

### 5.1.5 Wavelength Calibration

In this recipe we reduce a set of arc frames to detect arc emission lines and to determine the wavelength solution for each file. The three available lamps are combined to ensure a smooth wavelength solution across the entire range. Only one raw arc frame is required, but one should have at least one frame for all three lamps for a good solution across the full MUSE wavelength range.

```
/home/user> cat wavecal01.sof
  raw/arc/MUSE.2014-02-11T20:35:15.782.fits ARC
  raw/arc/MUSE.2014-02-11T20:35:28.534.fits ARC
  raw/arc/MUSE.2014-02-11T20:35:39.978.fits ARC
  MASTER_BIAS-01.fits MASTER_BIAS
  MASTER_DARK-01.fits MASTER_DARK
```



MASTER\_FLAT-01.fitd MASTER\_FLAT TRACE\_TABLE-01.fits TRACE\_TABLE cal/linelist\_master.fits LINE\_CATALOG /home/user> esorex muse\_wavecal --nifu=1 --residuals wavecal01.sof /home/user> mv esorex.log LOGs/wavecal01.log /home/user> mv wavecal01.sof SOFs/wavecal01.sof

Again, note that the --residuals parameter is not necessary, but it may be convenient to have the extra WAVECAL\_RESIDUALS table, in case one wants to verify the wavelength solution (see Section 8.4.2).

As before, the script below does the processing for all IFUs in parallel.

See section 7.1.4 for a full description of the **muse\_wavecal** recipe.

### 5.1.6 LSF calculation

If one is planning to subtract the sky from the data later, one needs a representation of the line spread function (LSF). This is computed by the **muse** lsf recipe which works by analyzing the arc lines.

```
/home/user> cat lsf01.sof
  raw/arc/MUSE.2014-02-11T20:35:15.782.fits ARC
  raw/arc/MUSE.2014-02-11T20:35:28.534.fits ARC
  raw/arc/MUSE.2014-02-11T20:35:39.978.fits ARC
  MASTER_BIAS-01.fits MASTER_BIAS
  TRACE_TABLE-01.fits TRACE_TABLE
  WAVECAL_TABLE-01.fits WAVECAL_TABLE
  cal/linelist_master.fits LINE_CATALOG
/home/user> esorex muse_lsf --nifu=1 --save_subtracted lsf01.sof
/home/user> mv esorex.log LOGs/lsf01.log
/home/user> mv lsf01.sof SOFs/lsf01.sof
```

Here, one should make sure that one has a number of exposures per arc lamp, ideally at least 10, so that the faint wings of the line profiles can be measured with reasonable S/N.

```
#!/bin/bash
for ifu in {01..24} ; do
    esorex muse_lsf --nifu=${ifu} --save_subtracted lsf${ifu}.sof 2>&1 |\
        \
        tee LOGs/lsf${ifu}.log &
```



| File       Edit       Verw       File       Out       Zoon       Socie       Color       Regin       WCS       Analysis       Personal       Color       Regin       WCS       Analysis       Personal       Color       Regin       WCS       Analysis       Personal       Color       Regin                                                                            | × 💿                                                                 |                      |                   | SAC             | Dimage ds9    |              | 008           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|-------------------|-----------------|---------------|--------------|---------------|
| Ric       R                                                                                                                                                                             | File Edit Vie                                                       | w Frame Bin          | Zoom Scale Color  | Region WCS Anal | lysis         |              | Help          |
| file       edit       yiuw       frame       ion       zoom       scale       color       region       wcs       help         •       10 ft       zoom 1/8       zoom 1/ | File<br>Object<br>Value<br>WCS<br>Physical<br>Image<br>Frame 1 Zoon | ARC_RESAMPLE<br>LAMP | D.fits            |                 |               |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | file                                                                | edit v               | view frame        | bin             | zoom scale    | color region | wcs help      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                   | + to fit             | zoom 1 <i>1</i> 8 | zoom 1/4        | zoom 1/2 zoon | m 1 zoom 2   | zoom 4 zoom 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                      |                   |                 |               |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                      |                   |                 |               |              |               |

Figure 5.3: Resampled image of the ARC image after wavelength calibration was applied. Note that all lines are now on the same wavelength on uninterrupted horizontal lines.

sleep 5s done ; wait

See section 7.1.5 for a full description of the  $muse\_lsf$  recipe.

#### 5.1.7 Instrument Geometry

This recipe needs a very long special exposure sequence and care has to be taken to check the data beforehand and afterwards. It is normally enough to use the provided geometry table instead.

The instrument geometry contains information on where within the field of view each slice of each IFU is located. It assigns an initial position on the sky for each CCD pixel.



This recipe needs at least the *full* special exposure sequence as input (typically 80 exposures!), as well as master-bias files, the wavelength calibration, trace tables for all IFUs, and a specially prepared line list with only a few bright calibration lines in it. It can make use of extra exposures with different structured content to check its calibration. Master darks and flat-fields *can* be input, but this is optional and should only be done if the recipe does not otherwise work. Running the recipe does not usually require any parameters.

This recipe does its work in parallel on multiple threads, loading all input data simultaneously. If the user restricts the number of threads to below 24 (the environment variable OMP\_NUM\_THREADS should be used for this purpose), only a fraction of the IFU data is loaded at the same time. Roughly 16 GB of RAM are required per thread.

```
/home/user> cat geo.sof
    raw/geo/MUSE_WFM_WAVE213_0010.fits MASK
```

raw/geo/MUSE\_WFM\_WAVE213\_0011.fits MASK

```
raw/geo/MUSE_WFM_WAVE213_0012.fits MASK
   raw/geo/MUSE_WFM_WAVE213_0013.fits MASK
   raw/geo/MUSE_WFM_WAVE213_0014.fits MASK
   raw/geo/MUSE_WFM_WAVE213_0015.fits MASK
[... 70 rows omitted ...]
   raw/geo/MUSE_WFM_WAVE213_0086.fits MASK
    raw/geo/MUSE_WFM_WAVE213_0087.fits MASK
    raw/geo/MUSE_WFM_WAVE213_0088.fits MASK
    raw/geo/MUSE_WFM_WAVE213_0089.fits MASK
   MASTER_BIAS-01.fits MASTER_BIAS
   MASTER_BIAS-02.fits MASTER_BIAS
[... 21 rows omitted ...]
   MASTER_BIAS-24.fits MASTER_BIAS
   TRACE_TABLE-01.fits TRACE_TABLE
   TRACE_TABLE-02.fits TRACE_TABLE
[... 21 rows omitted ...]
    TRACE_TABLE-24.fits TRACE_TABLE
   WAVECAL_TABLE-01.fits WAVECAL_TABLE
   WAVECAL_TABLE-02.fits WAVECAL_TABLE
[... 21 rows omitted ...]
   WAVECAL_TABLE-24.fits WAVECAL_TABLE
    cal/linelist_master.fits LINE_CATALOG
    raw/geo/MUSE_IQE_MASK213_0001.fits MASK_CHECK
/home/user> export OMP_NUM_THREADS=6
/home/user> esorex --no-datamd5 --no-checksum muse_geometry geo.sof 2>&1 | tee -i LOGs/geo.lc
```

```
/home/user> muse_product_sign GEOMETRY_TABLE.fits GEOMETRY_TABLE
```

/home/user> mv geo.sof SOFs/geo.sof

(The extra switches for EsoRex are there to speed up processing. The checksums are not needed on all intermediate calibrations that this recipe saves. If needed, they can be set on the final table using the muse\_product\_sign tool, as shown above.)

The muse\_geo\_plot tool can be used to create a graphical representation of the resulting GEOMETRY\_TABLE in PNG or PDF format (see Fig. 5.4):

/home/user> muse\_geo\_plot -f png -s 4 4 GEOMETRY\_TABLE.fits GEOMETRY\_TABLE.png



Figure 5.4: Visual representation of a GEOMETRY\_TABLE, produced with the muse\_geo\_plot tool.

The GEOMETRY\_CUBE output cube as well as any GEOMETRY\_CHECK output images should be used to visually verify the quality of the calibration.

See section 7.1.7 for a full description of the **muse** geometry recipe.

### 5.1.8 Twilight

If the observations included twilight sky flat-fields, then this step combines them into a three-dimensional illumination correction. The cube produced here also propagates the integrated flux found in the FITS header to the science data, to even out throughput differences between the IFUs.

At least three input skyflat exposures are required for this recipe to run. Contrary to most other basic processing recipes, this needs input data from all 24 IFUs to produce useful results (but for brevity, not all files are shown):

```
/home/user> cat twilight.sof
  raw/SkyCalib/MUSE.2014-02-12T06:15:22.033.fits SKYFLAT
  raw/SkyCalib/MUSE.2014-02-12T06:18:00.228.fits SKYFLAT
  raw/SkyCalib/MUSE.2014-02-12T06:20:58.877.fits SKYFLAT
  MASTER_BIAS-01.fits MASTER_BIAS
  MASTER_BIAS-02.fits MASTER_BIAS
  [... 21 rows omitted ...]
```



MASTER\_BIAS-24.fits MASTER\_BIAS MASTER\_FLAT-01.fits MASTER\_FLAT MASTER\_FLAT-02.fits MASTER\_FLAT [... 21 rows omitted ...] MASTER\_FLAT-24.fits MASTER\_FLAT TRACE\_TABLE-01.fits TRACE\_TABLE TRACE\_TABLE-02.fits TRACE\_TABLE [... 21 rows omitted ...] TRACE\_TABLE-24.fits TRACE\_TABLE WAVECAL\_TABLE-01.fits WAVECAL\_TABLE WAVECAL\_TABLE-02.fits WAVECAL\_TABLE [... 21 rows omitted ...] WAVECAL\_TABLE-24.fits WAVECAL\_TABLE cal/geometry\_table.fits GEOMETRY\_TABLE cal/vignetting\_mask.fits VIGNETTING\_MASK /home/user> esorex muse\_twilight twilight.sof /home/user> mv esorex.log LOGs/twilight.log /home/user> mv twilight.sof SOFs/twilight.sof

The input VIGNETTING\_MASK is optional, but may be used to correct the vignetting that affected MUSE WFM data in the lower right corner of the field of view, in data taken before April 2016. For NFM, an internal mask is created, any mask given as input is ignored.

The main output for this recipe is TWILIGHT\_CUBE.fits, the additional DATACUBE\_SKYFLAT.fits is the cube with the resampled data, without any modeling applied.

This recipe should produce reasonable results without parameters, but as always, please refer to section 7.1.6 for a full description of the **muse twilight** recipe.

#### 5.1.9 Basic science processing

When all the master calibration files are available, the basic science processing procedure removes the instrumental signature from the data of each of the on-sky exposures and converts them from the FITS image format to a FITS-based pixel table format.

```
/home/user> cat scibasic01.sof
    raw/object/MUSE.2014-02-11T20:35:50.720.fits OBJECT
    MASTER_BIAS-01.fits MASTER_BIAS
    MASTER_DARK-01.fits MASTER_DARK
    WAVECAL_TABLE-01.fits WAVECAL_TABLE
    TRACE_TABLE-01.fits TRACE_TABLE
    MASTER_FLAT-01.fits MASTER_FLAT
    cal/geometry_table.fits GEOMETRY_TABLE
/home/user> esorex muse_scibasic --nifu=1 --resample scibasic01.sof
/home/user> mv esorex.log LOGs/scibasic01.log
/home/user> mv scibasic01.sof SOFs/scibasic01.sof
```

If an illumination flat-field was observed within the  $\pm 1$  hour around the target observations (or an attached flat-field during the night and similarly close in time), then it's recommended to pass this exposure as raw input file ILLUM to **muse** scibasic, to get per-slice illumination correction:



| /home/user> cat scibasicillum01.sof                                       |
|---------------------------------------------------------------------------|
| raw/object/MUSE.2014-02-11T20:35:50.720.fits OBJECT                       |
| raw/object/MUSE.2014-02-11T20:59:35.367.fits ILLUM                        |
| MASTER_BIAS-01.fits MASTER_BIAS                                           |
| MASTER_DARK-01.fits MASTER_DARK                                           |
| WAVECAL_TABLE-01.fits WAVECAL_TABLE                                       |
| TRACE_TABLE-01.fits TRACE_TABLE                                           |
| MASTER_FLAT-01.fits MASTER_FLAT                                           |
| cal/geometry_table.fits GEOMETRY_TABLE                                    |
| <pre>/home/user&gt; esorex muse_scibasicnifu=1resample=False \</pre>      |
| scibasicillum01.sof                                                       |
| /home/user> mv esorex.log LOGs/scibasicillum01.log                        |
| <pre>/home/user&gt; mv scibasicillum01.sof SOFs/scibasicillum01.sof</pre> |

This is the last recipe that must be called for each IFU separately. The automated script to cycle through all 24 IFUs is shown below. In most cases, the 2D-resampled image is not needed. We switch it off here:

```
#!/bin/bash
for ifu in {01..24} ; do
    esorex muse_scibasic --nifu=${ifu} --resample=False \
        scibasicillum${ifu}.sof 2>&1 | \
        tee LOGs/scibasicillum${ifu}.log &
        sleep 5s
done ; wait
```

The basic reduction is finished with the creation of the pre-reduced pixel tables (these are the files that are named PIXTABLE\_\*). These pixel tables will now run through (some of) the more complicated post-processing recipes, such as flux calibration and sky subtraction, before creating the final cubes.

For the user to check whether all basic reduction procedures were succesful a reduced image of the CCD (OBJECT\_RED\_\*) and a resampled image using tracing and wavelength calibration solutions (OBJECT\_RESAMPLED\_\*). Usually, neither of them are needed, so that the user can skip the --resample parameter and instead set --saveimage=false, to save space.

See section 7.1.8 for a full description of the **muse** scibasic recipe.

## 5.2 Post-Processing

This section covers the observing-dependent reduction from the pixel tables to the final datacubes. Not every step is mandatory, but the last recipe **muse\_scipost** is needed to create the cubes.

The post-processing part of the MUSE Data Reduction works on the pixel tables rather than images, before the actual reconstruction into datacubes.

The naming convention of the output files in this section is that whenever there can be multiple output files of the same type, a \_nnnn number will be added before the file extension. For example, muse \_scipost can output multiple images of the field of view (one per filter), so that the filenames are IMAGE\_FOV\_0001.fits, IMAGE\_FOV\_0002.fits, etc., but it always only outputs a combined cube, named DATACUBE\_FINAL.fits. The muse \_create \_sky recipe on the other hand only takes a single exposure and never integrates anything except over the full range, so that it always only outputs files without numbers.



### 5.2.1 Standard Star and Flux Calibration

In this step we create a flux response curve for overall flux calibration of the science images using a standard star. As such, we need to remove the instrumental signature not only from the science observations, but also from the standard-star observations. The standard star needs to undergo the basic reduction to pixel tables as described in the "scibasic" section (see 5.1.9). As before, this is still performed on a per IFU basis. You can script this process for all IFUs:

```
/home/user> cat scibasic_std01.sof
  raw/std/MUSE.2014-02-11T20:36:01.300.fits STD
  MASTER_BIAS-01.fits MASTER_BIAS
  MASTER_FLAT-01.fits MASTER_FLAT
  TRACE_TABLE-01.fits TRACE_TABLE
  WAVECAL_TABLE-01.fits WAVECAL_TABLE
  cal/geometry_table.fits GEOMETRY_TABLE
/home/user> esorex muse_scibasic --nifu=1 --saveimage=False \
       scibasic_std01.sof
/home/user> mv esorex.log LOGs/scibasic_std01.log
/home/user> mv scibasic_std01.sof SOFs/scibasic_std01.sof
```

(Here, we opted to save disk space and not save the OBJECT\_RED\_\*.fits images by passing --saveimage=false.)

Now that the standard star observations have gone through the basic calibration process and are converted into pixel tables, we can use those for the flux calibration. In the following example, we have taken all 24 pixels tables of one standard-star observation:

```
/home/user> cat std.sof
    PIXTABLE_STD_0001-01.fits PIXTABLE_STD
    PIXTABLE_STD_0001-02.fits PIXTABLE_STD
    PIXTABLE_STD_0001-24.fits PIXTABLE_STD
    cal/extinction_paranal.fits EXTINCT_TABLE
    cal/std_flux_table.fits STD_FLUX_TABLE
/home/user> esorex muse_standard --profile=circle std.sof
/home/user> mv esorex.log LOGs/std.log
/home/user> mv std.sof SOFs/std.sof
```

This uses the default flux integration using a Moffat profile fit, with PampelMuse-like smoothing of the parameters along the wavelength direction. But one could also choose to use circular flux integration, using --profile=circle (see below). For NFM, the circular aperture flux integration is the standard. In case of a WFM dataset that results in artifacts in the response curve, explicitly selecting circular integration may cause less wiggles in the output response curve.

The file with the tag STD\_FLUX\_TABLE has to contain a reference table for the actual observed standard star. The table that ships with the MUSE pipeline contains usable reference curves for most stars observed with MUSE. In case a new star was observed, selection of the reference table by RA and DEC will fail and the recipe will return an error.

Here is the entire process as a script; in this case we run the standard star recipe twice, once with the default Moffat fit, once with circular integration, to be able to compare the results:



```
for i in 'seq -w 1 24'; do
    ( sed "s,XX,$i," scibasic_std.sof > scibasic_std${i}.sof &&
      esorex muse_scibasic --nifu=${i} --saveimage=false scibasic_std${i}.sof \
        2>&1 | tee LOGs/scibasic_std${i}.log &&
      rm -fv scibasic_std${i}.sof ) &
    sleep 15s
done ; wait
# run flux integration with smoothed Moffat profile fit (for WFM):
esorex muse_standard std.sof 2>&1 | tee LOGs/std_smoffat.log
mv -fv DATACUBE_STD-00.fits
                               DATACUBE_STD_smoffat.fits
mv -fv STD_FLUXES-00.fits
                               STD_FLUXES_smoffat.fits
mv -fv STD_RESPONSE-00.fits
                               STD_RESPONSE_smoffat.fits
mv -fv STD_TELLURIC-00.fits
                               STD_TELLURIC_smoffat.fits
# run flux integration with circular flux integration:
esorex muse_standard --profile=circle std.sof 2>&1 | tee LOGs/std_circle.log
mv -fv DATACUBE_STD-00.fits
                               DATACUBE_STD_circle.fits
mv -fv STD_FLUXES-00.fits
                               STD_FLUXES_circle.fits
mv -fv STD_RESPONSE-00.fits
                               STD_RESPONSE_circle.fits
mv -fv STD_TELLURIC-00.fits
                               STD_TELLURIC_circle.fits
```

By default, the recipe selects the brightest star in the field to be the standard star. In some cases, where one of the fainter star(s) in the field is the target object, it may be necessary to use --select=distance to select the correct star to compare to the reference. See section 7.2.1 for a full description of the muse standard recipe.

### 5.2.2 Astrometry

This recipe normally runs without problems, but for reduction of science data one should use a matched pair of geometry table and astrometric solution. It is recommended to use the provided input and skip this section.

Here, we will create the astrometric calibration file, which is necessary for correct *relative* transformation from pixel positions to world coordinates (RA, DEC).

```
/home/user> cat scibasic_ast01.sof
  raw/ast/MUSE.2014-02-11T21:40:02.300.fits ASTROMETRY
  MASTER_BIAS-01.fits MASTER_BIAS
  MASTER_DARK-01.fits MASTER_DARK
  MASTER_FLAT-01.fits MASTER_FLAT
  TRACE_TABLE-01.fits TRACE_TABLE
  WAVECAL_TABLE-01.fits WAVECAL_TABLE
  cal/geometry_table.fits GEOMETRY_TABLE
/home/user> esorex muse_scibasic --nifu=1 --saveimage=False \
        scibasic_ast01.sof
/home/user> mv esorex.log LOGs/scibasic_ast01.log
/home/user> mv scibasic_ast01.sof SOFs/scibasic_ast01.sof
```

(Again, we switched off saving of the pre-reduced object images.)



When running this recipe, one should make sure to use a geometry table that was created from data taken very close in time (and possibly temperature) to the astrometric exposure. Then one can use the same set of calibrations, especially the trace tables, that were used to create the geometry table. Only then the output of this recipe will create a matched pair of calibrations that can be used for the reduction of science data.

Once the pixel tables are pre-reduced, we can feed them into the **muse\_astrometry** recipe. For this, we need an **ASTROMETRY\_REFERENCE** table that contains a list of stars in the field observed. A table with the typical reference targets observed with MUSE is shipped with the pipeline. (Optionally, one can input files necessary for flux calibration, but that is usually not necessary and not done here.)

```
/home/user> cat astrometry.sof
```

| PIXTABLE_ASTROMETRY_0001-01.fits      | PIXTABLE_ASTROMETRY |
|---------------------------------------|---------------------|
| PIXTABLE_ASTROMETRY_0001-02.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-03.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-04.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-05.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-06.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-07.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-08.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-09.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-10.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-11.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-12.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-13.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-14.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-15.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-16.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-17.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-18.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-19.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-20.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-21.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-22.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-23.fits      | PIXTABLE_ASTROMETRY |
| PIXTABLE_ASTROMETRY_0001-24.fits      | PIXTABLE_ASTROMETRY |
| cal/astrometry_reference.fits AST     | TROMETRY_REFERENCE  |
| /home/user> esorex muse_astrometry a  | astrometry.sof      |
| /home/user> mv esorex.log LOGs/astron | netry.log           |
| /home/user> my astrometry.sof SOFs/as | strometry.sof       |

One should now make sure that the computed solution is close to  $0^{\prime\prime}_{...2}$  for both axes.

See section 7.2.3 for a full description of the **muse** astrometry recipe.

### 5.2.3 Sky Creation and Subtraction

This extra step is necessary, if we reduce data from an object that fills much of the field of view. We then would need to take an extra exposure of an (empty) sky field and create a SKY\_CONTINUUM and an initial SKY\_LINES table using the recipe **muse\_create\_sky**. (Otherwise, the sky subtraction is done directly in the **muse\_scipost** recipe.) The LSF\_PROFILE inputs produced by the **muse\_lsf** recipe have to be given as well.



The input pixtable must be either flux calibrated, or the flux calibration has to be specified as calibration files with the tags STD\_RESPONSE, EXTINCT\_TABLE and (optionally) STD\_TELLURIC.

```
/home/user> cat sky.sof
    cal/sky_lines.fits SKY_LINES
    STD_RESPONSE_moffat.fits STD_RESPONSE
    cal/extinction_paranal.fits EXTINCT_TABLE
    PIXTABLE_SKY-01.fits PIXTABLE_SKY
    PIXTABLE_SKY-02.fits PIXTABLE_SKY
[... 21 PIXTABLE_SKYs not shown ...]
    PIXTABLE_SKY-24.fits PIXTABLE_SKY
    LSF_PROFILE-01.fits LSF_PROFILE
    LSF_PROFILE-02.fits LSF_PROFILE
[... 21 LSF_PROFILEs not shown ...]
    LSF_PROFILE-24.fits LSF_PROFILE
[... 21 LSF_PROFILEs not shown ...]
    LSF_PROFILE-24.fits LSF_PROFILE
/home/user> mv esorex.log LOGs/sky.log
/home/user> mv sky.sof SOFs/sky.sof
```

See section 7.2.2 for a full description of the muse create sky recipe.

#### 5.2.4 Science Post-Processing and Final Datacube

When all necessary on-sky calibrations are performed, we can start the post-processing of the science data itself, i.e. the conversion from the pre-reduced pixel tables into the final datacube.

The following example creates a cube for a single full exposure, using flux calibration, model-based sky subtraction, and astrometric calibration, using the maximum pixel fraction for the drizzle algorithm. It additionally creates four images of the field of view, integrated over four filter functions, and saves the images as extensions of the cube FITS file:

```
/home/user> cat scipost1.sof
```

```
PIXTABLE_OBJECT_0001-01.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-02.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-03.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-04.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-05.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-06.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-07.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-08.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-09.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-10.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-11.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-12.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-13.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-14.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-15.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-16.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-17.fits PIXTABLE_OBJECT
PIXTABLE_OBJECT_0001-18.fits PIXTABLE_OBJECT
```



```
PIXTABLE_OBJECT_0001-19.fits PIXTABLE_OBJECT
    PIXTABLE_OBJECT_0001-20.fits PIXTABLE_OBJECT
    PIXTABLE_OBJECT_0001-21.fits PIXTABLE_OBJECT
    PIXTABLE_OBJECT_0001-22.fits PIXTABLE_OBJECT
    PIXTABLE_OBJECT_0001-23.fits PIXTABLE_OBJECT
   PIXTABLE_OBJECT_0001-24.fits PIXTABLE_OBJECT
    std/STD_RESPONSE_moffat.fits STD_RESPONSE
    std/STD_TELLURIC_moffat.fits STD_TELLURIC
    cal/extinction_paranal.fits EXTINCT_TABLE
    cal/LSF_PROFILE-01.fits LSF_PROFILE
    cal/LSF_PROFILE-02.fits LSF_PROFILE
    cal/LSF_PROFILE-03.fits LSF_PROFILE
    cal/LSF_PROFILE-04.fits LSF_PROFILE
    cal/LSF_PROFILE-05.fits LSF_PROFILE
    cal/LSF_PROFILE-06.fits LSF_PROFILE
    cal/LSF_PROFILE-07.fits LSF_PROFILE
    cal/LSF_PROFILE-08.fits LSF_PROFILE
    cal/LSF_PROFILE-09.fits LSF_PROFILE
    cal/LSF_PROFILE-10.fits LSF_PROFILE
    cal/LSF_PROFILE-11.fits LSF_PROFILE
    cal/LSF_PROFILE-12.fits LSF_PROFILE
    cal/LSF_PROFILE-13.fits LSF_PROFILE
    cal/LSF_PROFILE-14.fits LSF_PROFILE
    cal/LSF_PROFILE-15.fits LSF_PROFILE
    cal/LSF_PROFILE-16.fits LSF_PROFILE
    cal/LSF_PROFILE-17.fits LSF_PROFILE
    cal/LSF_PROFILE-18.fits LSF_PROFILE
    cal/LSF_PROFILE-19.fits LSF_PROFILE
    cal/LSF_PROFILE-20.fits LSF_PROFILE
    cal/LSF_PROFILE-21.fits LSF_PROFILE
    cal/LSF_PROFILE-22.fits LSF_PROFILE
    cal/LSF_PROFILE-23.fits LSF_PROFILE
    cal/LSF_PROFILE-24.fits LSF_PROFILE
    cal/astrometry_wcs.fits ASTROMETRY_WCS
    cal/sky_lines.fits SKY_LINES
    cal/filters.fits FILTER_LIST
/home/user> esorex muse_scipost \
        --filter=white, Johnson_V, Cousins_R, Cousins_I --format=xCube \
       scipost1.sof
/home/user> mv esorex.log LOGs/scipost1.log
/home/user> mv scipost1.sof SOFs/scipost1.sof
```

If more than one exposure is processed separately in this way, the output files have to be renamed to not be overwritten:

```
/home/user> mv -v DATACUBE_FINAL.fits DATACUBE_FINAL_01.fits
/home/user> mv -v PIXTABLE_REDUCED_0001.fits PIXTABLE_REDUCED_e01.fits
```

Note: this processing step requires a lot of RAM, approximately 18 GB per exposure are needed to successfully run it.



When using AO, Raman scattered light from the lasers enters the MUSE field, which shows up mainly as emission lines at 6485 and 6827Å. These vary slowly across the field, at about  $\pm 5\%$ . If the observed field is nearly empty, the pipeline can correct for this with a dedicated procedure. To use it, pass the RAMAN\_LINES file to the **muse\_scipost** recipe. It then computes the light distribution around the Raman lines, using only the sky part of the spectra. Again, this only works, if a large fraction in the field is sky background, but not if a large object was targeted. Hence, pass a high --skymodel\_fraction. To also save a file with with the images at the Raman wavelengths and the derived model, add "raman" to the --save parameter:

```
/home/user> cat scipost1acr.sof
   PIXTABLE_OBJECT_0001-01.fits PIXTABLE_OBJECT
[... 22 PIXTABLE_OBJECTs not shown ...]
   PIXTABLE_OBJECT_0001-24.fits PIXTABLE_OBJECT
   cal/astrometry_wcs.fits ASTROMETRY_WCS
   cal/filters.fits FILTER_LIST
   cal/sky_lines.fits SKY_LINES
   cal/extinction_paranal.fits EXTINCT_TABLE
   std/STD_RESPONSE_moffat.fits STD_RESPONSE
   cal/raman_lines.fits RAMAN_LINES
   cal/LSF_PROFILE-01.fits LSF_PROFILE
[... 22 LSF_PROFILEs not shown ...]
   cal/LSF_PROFILE-24.fits LSF_PROFILE
   std/STD_TELLURIC_moffat.fits STD_TELLURIC
/home/user> esorex muse_scipost \
        --filter=white,Johnson_V,Cousins_R,Cousins_I \
        --save=cube,autocal,raman,skymodel,individual \
        --skymodel_fraction=0.75 --autocalib=deepfield --format=xCube \
        scipost1acr.sof
/home/user> mv esorex.log LOGs/scipost1acr.log
/home/user> mv scipost1acr.sof SOFs/scipost1acr.sof
```

The Raman correction might work better, if an optimized, external sky mask (and an offset list, see below) is provided as input, but they are not strictly necessary.

Since in NFM the object takes a significant part of the field of view, the Raman correction is not possible there. In that case, it is not recommended to use the RAMAN\_LINES file, but instead let the pipeline subtract these peaks as part of the sky continuum.

In case the science field contains only small sources and is dominated by blank sky, one can improve the IFU-to-IFU and slice-to-slice flux variations with a process called autocalibration (or self-calibration). This uses the blank sky background to estimate flux-correction factors in each slice in several wavelength ranges and applies them, after rejecting outliers. It is applied on the basis of each individual exposure. To use it and write additional outputs that can be used to verify its performance, modify the **--save** and **--autocalib** as shown here:

```
/home/user> cat scipost1ac.sof
    PIXTABLE_OBJECT_0001-01.fits PIXTABLE_OBJECT
[... 22 PIXTABLE_OBJECTs not shown ...]
    PIXTABLE_OBJECT_0001-24.fits PIXTABLE_OBJECT
    cal/astrometry_wcs.fits ASTROMETRY_WCS
    cal/filters.fits FILTER_LIST
    cal/sky_lines.fits SKY_LINES
```



In this case, one should also optimize the sky subtraction to use a larger fraction of the field as sky, as was done here with 75%. On a field which contains a big object or is filled with the target, this method cannot be used.

To check, if the autocalibration worked well, one can plot the factors stored in the AUTOCAL\_FACTORS table, e.g. with the mpdaf.drs.plot\_autocal\_factors() function of the MPDAF Python package<sup>2</sup>.

Since autocalibration benefits from a contiguous sky background definition, external data (e.g. HST imaging) can be used to better define sky regions, by feeding a SKY\_MASK file into the pipeline. Such an integer image contains 1 at positions of sky background and 0 at positions of objects. A trick is to use a gnomonic world coordinate system in the FITS header of the SKY\_MASK. Then it can be used for multiple MUSE exposures of the same field. See A.1.3 for format details. Note that in this case, an OFFSET\_LIST (see Sect. 8.6) should also be given to align the MUSE exposures with the external WCS. The modified input of the above run of **muse** scipost is then:

```
/home/user> cat scipost1ac.sof
[... other input files as listed above ...]
    sky_mask_from_HST_with_WCS.fits SKY_MASK
    offset_list_my_field.fits OFFSET_LIST
/home/user> esorex muse_scipost \
       [... command line parameters as above ...]
/home/user> mv esorex.log LOGs/scipost1ac.log
/home/user> mv scipost1ac.sof SOFs/scipost1ac.sof
```

In case your data contains a large object, and autocalibration is not possible directly, because in each exposure some slices are completely covered by the target, a workaround might be to use an iterative procedure: (1) Run muse\_scipost as above, using autocalibration on all exposures involved, be sure to include "autocal" in the --save parameter and use --autocalib=deepfield. (2) Combine the AUTOCAL\_FACTORS tables of all exposures involved, using suitable rejection (e.g. using the median) on all corresponding rows, to produce a *typical* set of correction factors. This has to be done using an external tool, the mpdaf.drs.merge\_autocal\_factors() function of the MPDAF Python package could be useful here. (3) Rerun muse\_scipost, but this time use --autocalib=user and pass the "combined" AUTOCAL\_FACTORS as *input* to the recipe. This sometimes, but not always, results in smoother background without creating artifacts in the objects, especially if the exposures in question were taken close together in time and the dithering caused the objects to significantly move within the MUSE field of view (e.g. within one OB).

<sup>&</sup>lt;sup>2</sup>The MUSE Python Data Analysis Framework (MPDAF) was developed at CRAL and is available from a gitlab (https://git-cral.univ-lyon1.fr/MUSE/mpdaf) or PyPI (https://pypi.org/project/mpdaf/). See https://mpdaf.readthedocs. io/ for its documentation.



See section 7.2.4 for a full description of the **muse** scipost recipe.

#### 5.2.5 Combine Exposures

While the combination of different exposure can be done already in **muse\_scipost**, it may be easier to let that recipe process each exposure separately and save its post-processed pixel table as intermediate product. This allows the user to check the invididual datacube for proper reduction before starting the last step.

It also facilitates verification or computation of relative exposure offsets (see Sect. 8.6). Briefly, if the exposures are spatially offset (affected by the "wobble"), one can use the **muse\_exp\_align** recipe to automatically compute offsets using the IMAGE\_FOV images corresponding to each exposure. The offsets then get saved in the OFFSET\_LIST which is an optional input to **muse\_exp\_combine**. The same table can also be used to provide **muse exp combine** with relative exposure flux scales (see Sect. 8.7).

The individual pixel tables of each exposure can then be input into **muse\_exp\_combine** to create the final combined datacube. As with **muse\_scipost**, one could try to set the parameters **crsigma** and **pixfrac** to smaller values the more overlapping exposures are part of the dataset.

The following example creates the same cube as in the three-exposure example in 5.2.4, but starts from individual pixel tables:

```
/home/user> cat expcomb.sof
    PIXTABLE_REDUCED_e01.fits PIXTABLE_REDUCED
    PIXTABLE_REDUCED_e02.fits PIXTABLE_REDUCED
    PIXTABLE_REDUCED_e03.fits PIXTABLE_REDUCED
    cal/filters.fits FILTER_LIST
/home/user> esorex muse_exp_combine \
         --filter=white,Johnson_V,Cousins_R,Cousins_I --format=xCube \
         expcomb.sof
/home/user> mv esorex.log LOGs/expcomb.log
/home/user> mv expcomb.sof SOFs/expcomb.sof
```

This needs far fewer inputs, since the reduced individual pixel tables are already fully calibrated. *Note:* as above, this example needs approximately 55 GB of free RAM to finish!

See section 7.2.6 for a full description of the **muse** exp combine recipe.



# Chapter 6

# Reduction Cookbook - Python-CPL

The CPL interface is a Python module to access CPL recipes from Python. If you are used to programming in Python and already have your analysis software coded in Python, you should consider calling up the data reduction recipes for MUSE using this handy module. That way you will not have to leave the familiar environment and will have the output data already loaded within the Astropy module.

The Home page for the Python CPL module is https://pypi.python.org/pypi/python-cpl. These pages are much more detailed than this Cookbook, so please consider reading through them first, should you have any questions regarding installation or the running of the module.

The tutorial to fully reduce MUSE data is presented within a Python session.

We will usually be working within the Python window (denoted by >>>, which is called by:

```
/home/user> python
Python 2.7 (r27:82500, Aug 07 2010, 16:54:59) [GCC] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

Of course, you can also use iPython or just run the commands as a .py script, we will show the commands step by step for illustrative purposes and clarity.

You can check out the results, logfiles or create filelists in another window (the secondary shell window will be denoted here with /home/user> so that there is no confusion with the Python command line. This gives us the flexibility that we don't lose any variable names or pointers by exiting Python. One of the advantages of Python-CPL is that you can immediately handle the outputs with the Astropy package and do any desired FITS file manipulation with (your) Python scripts without leaving the environment.

Before we begin the reduction process, we need to set everything up, so that the MUSE data-reduction pipeline recipes can be called within Python. We also to set up logging. Within the Python session, first import the necessary module:

```
>>> import cpl
>>> import os
>>> import sys
>>> import astropy
```

These first few commands import the different modules. The relevant one is cpl.

```
>>> cpl.esorex.init()
```


This command loads all CPL settings into Python that are usually loaded with the esorex startup file. It searches in the same directories as esorex to find CPL recipes such as the MUSE pipeline recipes, but also other ESO reduction. Ensure that all the settings that are up to date, otherwise there might be some errors noted. If you do not have esorex installed, you have to explicitly specify the location of the recipes:

```
>>> cpl.Recipe.path = '/store/01/MUSE/recipes'
```

Once the recipe path is set, you can list all available recipes. The following command shows the name of the recipe and the version numbers:

```
>>> cpl.Recipe.list()
[('muse_scipost', ['1.0.1', '2.8.3']),
 ('muse_scibasic', ['1.0.1', '2.8.3']),
 ('muse_flat', ['1.0.1', '2.8.3']),
 ('muse_bias', ['1.0.1', '2.8.3']),
 ('muse_dark', ['1.0.1', '2.8.3']),
 ('muse_astrometry', ['1.0.1', '2.8.3']),
 ('muse_wavecal', ['1.0.1', '2.8.3']),
 ('muse_exp_combine', ['1.0.1', '2.8.3']),
 ('muse_standard', ['1.0.1', '2.8.3']),
 ('muse_create_sky', ['1.0.1', '2.8.3']),
```

Next, we set up logging, so that we can see if something went wrong during the processing. A basic setup (similar to the style used in esorex) is:

```
>>> import logging
>>> log = logging.getLogger()
>>> log.setLevel(logging.DEBUG)
>>> ch = logging.FileHandler('cpl_recipe.log')
>>> ch.setLevel(logging.DEBUG)
>>> fr = logging.Formatter('\%(created)s [\%(levelname)s] \%(name)s:
    %(message)s','%H:%M:%S')
>>> ch.setFormatter(fr)
>>> log.addHandler(ch)
```

Ensure the name of the log (here named: cpl\_recipe.log) is replaced with the name of the actual recipe, e.g. cpl\_muse\_bias.log, or something similar. In this example the logging level is set to the DEBUG, which is the lowest level. Other options are: INFO, WARN, ERROR and OFF.

# 6.1 Basic Reduction

The basic reduction sets up all parameters for the science reductions. Many master files (such as the master dark and the trace table), which are applied over and over again, are generated during this stage of the reductions. The calibration recipes are executed on the basis of single CCDs on an IFU per IFU basis.

#### 6.1.1 Identification of raw input files

The name of the raw files are the usual ESO archive file names: MUSE. dateTtime.fits.fz, with the precision of the time stamp indicated in milliseconds. Date and time stamp are derived from the date and time of the observation (exposure start), which is also stored in the header field DATE-OBS, for example



MUSE.2013-07-11T15:31:00.014.fits.fz

The primary identification of raw input files is done using the keywords HIERARCH ESO DPR CATG and HIERARCH ESO DPR TYPE from the FITS header. See section A.1.1 for the list of possible input frames and header keywords. The Python script from section 6.1.1 can be used to sort a given list of input files in the working directory into subdirectories according to their type. Other interesting keywords are HIERARCH ESO INS MODE and HIERARCH ESO DET READ CURNAME.

The following Python script can be used to sort a given list of input files in the working directory into subdirectories according to their input frame type.

```
import glob, os, pyfits
for fname in glob.glob('*.fits'):
    with pyfits.open(fname) as fits:
        d_catg = fits[0].header.get('ESO DPR CATG')
        d_type = fits[0].header.get('ESO DPR TYPE')
   dir = ('bias' if d_catg == 'CALIB' and d_type == 'BIAS' else
      'dark' if d_catg == 'CALIB' and d_type == 'DARK' else
      'flat' if d_catg == 'CALIB' and d_type == 'FLAT,LAMP' else
      'illum' if d_catg == 'CALIB' and d_type == 'FLAT,LAMP,ILLUM' else
      'ampl' if d_catg == 'TECHNICAL' and d_type == 'FLAT,LAMP,THRUPUT' else
      'arc' if d_catg == 'CALIB' and d_type == 'WAVE' else
      'mask' if d_catg == 'CALIB' and d_type == 'WAVE,MASK' else
      'skyflat' if d_catg == 'CALIB' and d_type == 'FLAT,SKY' else
      'object' if d_catg == 'SCIENCE' and d_type == 'OBJECT' else
      'sky' if d_catg == 'SCIENCE' and d_type == 'SKY' else
      'astrometry' if d_catg == 'CALIB' and d_type == 'ASTROMETRY' else
      'std' if d_catg == 'CALIB' and d_type in ('STD', 'STD, TELLU') else
      None)
    if dir is not None:
        if not os.path.exists(dir):
            os.mkdir(dir)
        os.rename(fname, os.path.join(dir, fname))
    else:
        print('Warning: cannot identify %s' % fname)
```

In the following tutorial, we assume the files are sorted in subdirectories such as it is done with this script.

#### 6.1.2 Bias

We now combine the raw bias frames into one master-bias file used throughout the reductions. At least three raw bias frames are needed as input files for this recipe to work correctly. The final product created with this recipe is named MASTER\_BIAS-[xx].fits, where [xx] is the IFU number specified with the nifu parameter.

import cpl



See section 7.1.1 for a full description of the **muse** bias recipe.

#### 6.1.3 Dark

We now combine the raw dark frames to create one master dark file. This procedure also locates the bad pixels. Since the dark current of modern CCDs is small, the master dark frame itself will likely not be used further. However, the bad pixel file can be used in the rest of the reductions.

At least 3 raw dark frames are needed as input files for the reduction to work. The final product created here is called MASTER\_DARK-[xx].fits, again the [xx] represents the current IFU number.

See section 7.1.2 for a full description of the **muse** dark recipe.

#### 6.1.4 Flat and Trace Table

In this step we combine the raw flat frames into one master flat file. We also locate and trace the slice locations and locate the dark pixels.



At least three raw flat frames are needed for the recipe **muse** flat to work.

See section 7.1.3 for a full description of the **muse** flat recipe.

#### 6.1.5 Wavelength Calibration

With this recipe we reduce the arc frames to detect arc emission lines and to determine a wavelength solution for each file. The three available lamps are combined to ensure a smooth wavelength solution across the entire range.

Only one raw arc frame is required, but one should aim to have at least one frame per lamp or a frame with all lamps on for complete wavelength coverage.

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/wavecal.log'
muse_wavecal = cpl.Recipe('muse_wavecal')
muse_wavecal.output_dir = '.'
muse_wavecal.calib.LINE_CATALOG = 'cal/linelist_master.fits'
muse_wavecal.param.residuals = True
for ifu in range(1, 25):
   muse_wavecal(['raw/arc/MUSE.2014-02-11T20:35:15.782.fits',
        'raw/arc/MUSE.2014-02-11T20:35:28.534.fits',
        'raw/arc/MUSE.2014-02-11T20:35:39.978.fits'],
        param = {'nifu': ifu},
        calib = {'MASTER_BIAS': 'MASTER_BIAS-%02i.fits' % ifu,
            'MASTER_DARK': 'MASTER_DARK-%02i.fits' % ifu,
            'MASTER_FLAT': 'MASTER_FLAT-%02i.fitd' % ifu,
            'TRACE_TABLE': 'TRACE_TABLE-%02i.fits' % ifu})
```



See section 7.1.4 for a full description of the **muse** wavecal recipe.

#### 6.1.6 LSF calculation

If one plans to subtract the sky from the data later, one needs a representation of the line spread function (LSF). This is computed by the **muse** lsf recipe, which works by analyzing the arc lines.

Here, one should ensure that one has a number of exposures per arc lamp, ideally at least 10, so that the faint wings of the line profiles can be measured with reasonably high S/N.

See section 7.1.5 for a full description of the **muse** lsf recipe.

#### 6.1.7 Instrument Geometry

This recipe needs a very long special exposure sequence and care has to be taken to check the data beforehand and afterwards. It is normally enough to use the provided geometry table instead.

The instrument geometry provides information on where within the field of view each slice of each IFU is located. Each CCD pixel is assigned an initial position on the sky.

This recipe needs at least the *full* special exposure sequence as input (typically 80 exposures!), as well as master-bias files, the wavelength calibration, trace tables for all IFUs, and a specially prepared line list with only a few bright calibration lines in it. It can make use of extra exposures with different structured content to check its calibration. Master darks and flat-fields *can* be input, but this is optional and should only be done if the recipe does not otherwise work. Running the recipe does not usually require any parameters.

This recipe does its work in parallel on multiple threads, loading all input data simultaneously. If the user restricts the number of threads to below 24 (the environment variable OMP\_NUM\_THREADS should be used for this purpose), only a fraction of the IFU data is loaded at the same time. Roughly 16 GB of RAM are required per thread.





Figure 6.1: Visual representation of a GEOMETRY\_TABLE, produced with the muse\_geo\_plot tool.

After it finished, one can use the tool muse\_geo\_plot to create a graphical representation of the resulting GEOMETRY\_TABLE in PNG or PDF format (see Fig. 6.1):



/home/user> muse\_geo\_plot -f png -s 4 4 GEOMETRY\_TABLE.fits GEOMETRY\_TABLE.png

One could also look at the GEOMETRY\_CUBE output cube as well as any GEOMETRY\_CHECK output images to visually verify the quality of the calibration.

See section 7.1.7 for a full description of the **muse** geometry recipe.

#### 6.1.8 Skyflat

If the observations included twilight sky flat-fields, this step combines them into a three-dimensional illumination correction. The cube produced here also propagates the integrated flux found in the FITS header to the science data, to even out throughput differences between the IFUs.

At least three input sky flat-field exposures are required for this recipe to run. Contrary to most other basic processing recipes, this needs input data from all 24 IFUs to produce useful results (for brevity, not all files are shown):

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/twilight.log'
muse_twilight = cpl.Recipe('muse_twilight')
muse_twilight.output_dir = '.'
muse_twilight.calib.MASTER_BIAS = [('calib/MASTER_BIAS-%02i.fits' % ifu)
                                  for ifu in range(1, 25)]
muse_twilight.calib.MASTER_FLAT = [('calib/MASTER_FLAT-%02i.fits' % ifu)
                                  for ifu in range(1, 25)]
muse_twilight.calib.TRACE_TABLE = [('calib/TRACE_TABLE-%02i.fits' % ifu)
                                  for ifu in range(1, 25)]
muse_twilight.calib.WAVECAL_TABLE = [('calib/WAVECAL_TABLE-%02i.fits' % ifu)
                                    for ifu in range(1, 25)]
muse_twilight.calib.GEOMETRY_TABLE = 'cal/geometry_table.fits'
muse_twilight.calib.VIGNETTING_MASK = 'cal/vignetting_mask.fits'
muse_twilight(['raw/SkyCalib/MUSE.2014-02-12T06:15:22.033.fits SKYFLAT',
               'raw/SkyCalib/MUSE.2014-02-12T06:18:00.228.fits SKYFLAT',
               'raw/SkyCalib/MUSE.2014-02-12T06:20:58.877.fits SKYFLAT'])
```

The input VIGNETTING\_MASK is optional, but may be used to correct the vignetting that affected MUSE WFM data in the lower right corner of the field of view, in data taken before April 2016. For NFM, an internal mask is created, any mask given as input is ignored.

The main output is TWILIGHT\_CUBE.fits. The additional DATACUBE\_SKYFLAT.fits is the cube with the resampled data, without any modeling applied.

This recipe should produce reasonable results without the specification of additional parameters; please see to section 7.1.6 for a full description of the **muse** twilight recipe.



#### 6.1.9 Basic science processing

This procedure removes the instrumental signature from the data of each of the standard star and science CCD images and converts them from FITS-image to a pixel-table format.

If an illumination flat-field image was observed within one hour around the target observations (or an attached flat-field image during the night and similarly close in time), it's recommended to pass this exposure as a raw input file to **muse** scibasic (ILLUM), to get a per-slice illumination correction:

The automated script to cycle through all 24 IFUs is shown below. The 2D-resampled image is not needed in most cases and it is switched off here:

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scibasicillum.log'
muse_scibasic = cpl.Recipe('muse_scibasic')
muse_scibasic.output_dir = '.'
muse_scibasic.calib.GEOMETRY_TABLE = 'cal/geometry_table.fits'
muse_scibasic.param.resample = False
for ifu in range(1, 25):
   muse_scibasic({'OBJECT':
        ['raw/object/MUSE.2014-02-11T20:35:50.720.fits'], 'ILLUM':
        ['raw/object/MUSE.2014-02-11T20:59:35.367.fits']},
        param = {'nifu': ifu},
        calib = {'MASTER_BIAS': 'MASTER_BIAS-%02i.fits' % ifu,
            'MASTER_DARK': 'MASTER_DARK-%02i.fits' % ifu,
            'WAVECAL_TABLE': 'WAVECAL_TABLE-%02i.fits' % ifu,
            'TRACE_TABLE': 'TRACE_TABLE-%02i.fits' % ifu,
            'MASTER_FLAT': 'MASTER_FLAT-%02i.fits' % ifu})
```

The basic reduction is now finished and we have created pre-reduced pixel tables (the files named PIXTABLE\_\*). These pixel tables will now run through (some of) the more complicated post-processing recipes, such as flux calibration or sky subtraction, before creating the final cubes.

For the user to check whether all the basic reduction procedures were successful, a reduced image of the CCD (OBJECT\_RED\_\*) and a resampled image using tracing and wavelength calibration solutions (OBJECT\_RESAMPLED\_\*) were created. Usually, neither of them are needed, skip the --resample parameter and instead set --saveimage=false to save space.

See section 7.1.8 for a full description of the **muse** scibasic recipe.

### 6.2 Post-Processing

This section covers the observations-dependent image construction from the pixel tables to the final 3D datacubes. The order of the steps here is not important and not every step is mandatory, but the last **muse scipost** recipe is needed to create the cubes.

The Post-Processing part of the MUSE Data Reduction works on the pixel tables rather than the FITS files, before the actual image reconstruction into FITS Datacubes. The recipes in this part construct the images based on observations-dependent conditions.



The naming convention of the output files in this section is that whenever there can be multiple output files of the same type, a \_nnnn number will be added before the file extension. For example, muse \_scipost can output multiple images of the field of view (one per filter), so that the filenames are IMAGE\_FOV\_0001.fits, IMAGE\_FOV\_0002.fits, etc., but it always only outputs a combined cube, named DATACUBE\_FINAL.fits. The muse \_create \_sky recipe on the other hand only takes a single exposure and never integrates anything except over the full range, so that it always only outputs files without numbers.

#### 6.2.1 Standard Star and Flux Calibration

In this step we create a flux response curve for overall flux calibration of the science images using a standard star. As such, we need to remove the instrumental signature not only from the science observations, but also from the standard-star observations. The standard star needs to undergo the basic reduction to pixel tables as described in the "scibasic" section (see 6.1.9). As before, this is still performed on a per IFU basis. You can script this process for all IFUs:

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scibasic_std.log'
muse_scibasic = cpl.Recipe('muse_scibasic')
muse_scibasic.output_dir = '.'
muse_scibasic.calib.GEOMETRY_TABLE = 'cal/geometry_table.fits'
muse_scibasic.param.saveimage = False
for ifu in range(1, 25):
    muse_scibasic('raw/std/MUSE.2014-02-11T20:36:01.300.fits',
        param = {'nifu': ifu},
        calib = {'MASTER_BIAS': 'MASTER_BIAS-%02i.fits' % ifu,
            'MASTER_FLAT': 'MASTER_FLAT-%02i.fits' % ifu,
            'TRACE_TABLE': 'TRACE_TABLE-%02i.fits' % ifu,
            'WAVECAL_TABLE': 'WAVECAL_TABLE-%02i.fits' % ifu})
```

(Here, we opted to save disk space and not save the OBJECT\_RED\_\*.fits images by passing saveimage=False).

Now that the standard star observations have gone through the basic calibration process and are converted into pixel tables, we can use those for the flux calibration. In the following example, we have taken all 24 pixels tables of one standard-star observation:

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/std.log'
muse_standard = cpl.Recipe('muse_standard')
muse_standard.output_dir = '.'
muse_standard.calib.EXTINCT_TABLE = 'cal/extinction_paranal.fits'
muse_standard.calib.STD_FLUX_TABLE = 'cal/std_flux_table.fits'
muse_standard.param.profile = 'circle'
```



This uses the default flux integration using a Moffat profile fit, with PampelMuse-like smoothing of the parameters along the wavelength direction. But one could also choose to use circular flux integration, using profile='circle' (see below). For NFM, the circular aperture flux integration is the standard. In case of a WFM dataset that results in artifacts in the response curve, explicitly selecting circular integration may cause less wiggles in the output response curve.

The file with the tag STD\_FLUX\_TABLE has to contain a reference table for the actual observed standard star. The table that ships with the MUSE pipeline contains usable reference curves for most stars observed with MUSE. In case a new star was observed, selection of the reference table by RA and DEC will fail and the recipe will return an error.

Here is the entire process as a script; in this case we run the standard star recipe twice, once with the default Moffat fit, once with circular integration, to be able to compare the results:

```
import cpl
import os
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scibasic_std.log'
muse_scibasic = cpl.Recipe('muse_scibasic')
muse_scibasic.output_dir = '.'
muse_scibasic.calib.GEOMETRY_TABLE = 'cal/geometry_table.fits'
for ifu in range(1, 25):
   muse_scibasic('std/MUSE.2014-02-11T20:36:01.300.fits',
        tag='STD',
        param = {'nifu': ifu},
        calib = {'TRACE_TABLE': 'TRACE_TABLE-%02i.fits' % ifu,
            'MASTER_BIAS': 'MASTER_BIAS-%02i.fits' % ifu,
            'MASTER_FLAT': 'MASTER_FLAT-%02i.fits' % ifu,
            'WAVECAL_TABLE': 'WAVECAL_TABLE-%02i.fits' % ifu})
muse_standard = cpl.Recipe('muse_standard')
muse_standard.calib.STD_FLUX_TABLE = 'cal/std_flux_table.fits'
muse_standard.calib.EXTINCT_TABLE = 'cal/extinction_paranal.fits'
# run flux integration with smoothed Moffat profile fits:
cpl.esorex.log.file = 'LOGs/std_moffat.log'
os.mkdir('smoffat')
muse_standard.output_dir = 'smoffat'
muse_standard([('PIXTABLE_STD_0001-%02i.fits' % ifu) for ifu in range(1,25)])
# run flux integration with circular flux integration:
cpl.esorex.log.file = 'LOGs/std_circle.log'
os.mkdir('circle')
muse_standard.output_dir = 'circle'
```



muse\_standard.param.profile = 'circle'
muse\_standard([('PIXTABLE\_STD\_0001-%02i.fits' % ifu) for ifu in range(1,25)])

By default, the recipe selects the brightest star in the field to be the standard star. In some cases, where one of the fainter star(s) in the field is the target object, it may be necessary to use select='distance' to select the correct star to compare to the reference. See section 7.2.1 for a full description of the muse standard recipe.

#### 6.2.2 Astrometry

This recipe normally runs without problems, but for reduction of science data one should use a matched pair of geometry table and astrometric solution. It is recommended to use the provided input and skip this section.

Here, we will create the astrometric calibration file, which is necessary for correct *relative* transformation from pixel positions to world coordinates (RA, DEC).

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scibasic_ast01.log'
muse_scibasic = cpl.Recipe('muse_scibasic')
muse_scibasic.output_dir = '.'
muse_scibasic.calib.MASTER_BIAS = 'MASTER_BIAS-01.fits'
muse_scibasic.calib.MASTER_DARK = 'MASTER_DARK-01.fits'
muse_scibasic.calib.MASTER_FLAT = 'MASTER_FLAT-01.fits'
muse_scibasic.calib.TRACE_TABLE = 'TRACE_TABLE-01.fits'
muse_scibasic.calib.WAVECAL_TABLE = 'WAVECAL_TABLE-01.fits'
muse_scibasic.calib.GEOMETRY_TABLE = 'cal/geometry_table.fits'
muse_scibasic.param.nifu = 1
muse_scibasic.param.saveimage = False
muse_scibasic('raw/ast/MUSE.2014-02-11T21:40:02.300.fits')
```

When running this recipe, one should make sure to use a geometry table that was created from data taken very close in time (and possibly temperature) to the astrometric exposure. Then one can use the same set of calibrations, especially the trace tables, that were used to create the geometry table. Only then the output of this recipe will create a matched pair of calibrations that can be used for the reduction of science data.

Once the pixel tables are pre-reduced, we can feed them into the **muse\_astrometry** recipe. For this, we need an **ASTROMETRY\_REFERENCE** table that contains a list of stars in the field observed. A table with the typical reference targets observed with MUSE is shipped with the pipeline. (Optionally, one can input files necessary for flux calibration, but that is usually not necessary and not done here.)

```
import cpl
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/astrometry.log'
```



One should now ensure that the computed solution is close to  $0^{\prime\prime}_{..2}$  for both axes.

See section 7.2.3 for a full description of the **muse** astrometry recipe.

#### 6.2.3 Sky Creation and Subtraction

This extra step is necessary if we reduce data from an object that fills much of the field of view. Then we need to take an extra exposure of an (empty) sky field and create a SKY\_CONTINUUM and an initial SKY\_LINES table using the recipe **muse\_create\_sky**; otherwise, the sky subtraction is done directly in the **muse\_scipost** recipe.

The input pixtable must be either flux calibrated, or the flux calibration has to be specified as calibration files with the tags STD\_RESPONSE, EXTINCT\_TABLE and (optionally) STD\_TELLURIC.

```
import cpl
import os
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/create_sky.log'
muse_create_sky = cpl.Recipe('muse_create_sky)
muse_create_sky.output_dir = 'sky'
muse_create_sky.calib.SKY_LINES = 'cal/sky_lines.fits'
muse_create_sky.calib.STD_RESPONSE = 'moffat/STD_RESPONSE-00.fits'
muse_create_sky.calib.EXTINCT_TABLE = 'cal/extinction_paranal.fits '
muse_create_sky.calib.LSF_PROFILE = [ 'LSF_PROFILE-%02i.fits' % i for i in range(1, 25)])
muse_create_sky(['PIXTABLE_OBJECT-%02i.fits' % i for i in range(1, 25)])
```

See section 7.2.2 for a full description of the **muse** create sky recipe.

#### 6.2.4 Science Post-Processing and Final Datacube

When all necessary on-sky calibrations are created (or none is necessary), we can start the post-processing of the science data themselves, i.e. the conversion from the pre-reduced pixel tables to the final datacube.

The following example creates a cube for a single full exposure, using flux calibration, model-based sky subtraction, and astrometric calibration, and the maximum pixel fraction with the drizzle algorithm. It creates four images of the field of view, integrated over four filter functions, and saves the images as extensions of the cube FITS file:



```
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scipost1.log'
os.mkdir('0001')
muse_scipost = cpl.Recipe('muse_scipost')
muse_scipost.output_dir = '0001'
muse_scipost.calib.LSF_PROFILE = [('cal/LSF_PROFILE-%02i.fits') % ifu
                               for ifu in range(1, 25)]
muse_scipost.calib.ASTROMETRY_WCS = 'cal/astrometry_wcs.fits'
muse_scipost.calib.SKY_LINES = 'cal/sky_lines.fits'
muse_scipost.calib.EXTINCT_TABLE = 'cal/extinction_paranal.fits'
muse_scipost.calib.STD_RESPONSE = 'moffat/STD_RESPONSE-00.fits'
muse_scipost.calib.STD_TELLURIC = 'moffat/STD_TELLURIC-00.fits'
muse_scipost.calib.FILTER_LIST = 'cal/filters.fits'
muse_scipost.param.pixfrac = 1.
muse_scipost.param.filter = 'white, Johnson_V, Cousins_R, Cousins_I'
muse_scipost.param.format = 'xCube'
muse_scipost([('PIXTABLE_OBJECT_0001-%02i.fits' % ifu)
               for ifu in range(1, 25) ]
```

If more than one exposure is processed separately in this way, the output files should be put into separate output directories to not be overwritten.

Note: this processing step requires a lot of RAM to successfully run it, approximately 18 GB per exposure

When using AO, Raman scattered light from the lasers enters the MUSE field, which shows up mainly as emission lines at 6485 and 6827Å. These vary slowly across the field, at about  $\pm 5\%$ . If the observed field is nearly empty, the pipeline can correct for this with a dedicated procedure. To use it, pass the RAMAN\_LINES file to the **muse\_scipost** recipe. It then computes the light distribution around the Raman lines, using only the sky part of the spectra. Again, this only works, if a large fraction in the field is sky background, but not if a large object was targeted. Hence, pass a high --skymodel\_fraction. To also save a file with with the images at the Raman wavelengths and the derived model, add "raman" to the --save parameter:

```
import cpl
```

```
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scipost1acr.log'
muse_scipost = cpl.Recipe('muse_scipost')
muse_scipost.output_dir = '.'
muse_scipost.calib.ASTROMETRY_WCS = 'cal/astrometry_wcs.fits'
muse_scipost.calib.FILTER_LIST = 'cal/filters.fits'
muse_scipost.calib.SKY_LINES = 'cal/sky_lines.fits'
muse_scipost.calib.EXTINCT_TABLE = 'cal/extinction_paranal.fits'
muse_scipost.calib.STD_RESPONSE = 'std/STD_RESPONSE_moffat.fits'
muse_scipost.calib.RAMAN_LINES = 'cal/raman_lines.fits'
muse_scipost.calib.LSF_PROFILE = [('cal/LSF_PROFILE-%02i.fits') % ifu
for ifu in range(1, 25)]
```



The Raman correction might work better, if an optimized, external sky mask (and an offset list, see below) is provided as input, but they are not strictly necessary.

Since in NFM the object takes a significant part of the field of view, the Raman correction is not possible there. In that case, it is not recommended to use the RAMAN\_LINES file, but instead let the pipeline subtract these peaks as part of the sky continuum.

In case the science field contains only small sources and is dominated by blank sky, one can improve the IFU-to-IFU and slice-to-slice flux variations with a process called autocalibration (or self-calibration). This uses the blank sky background to estimate flux-correction factors in each slice in several wavelength ranges and applies them, after rejecting outliers. It is applied on the basis of each individual exposure. To use it and write additional outputs that can be used to verify its performance, modify the **--save** and **--autocalib** as shown here:

import cpl

```
cpl.esorex.init()
cpl.esorex.log.file = 'LOGs/scipost1ac.log'
muse_scipost = cpl.Recipe('muse_scipost')
muse_scipost.output_dir = '.'
muse_scipost.calib.ASTROMETRY_WCS = 'cal/astrometry_wcs.fits'
muse_scipost.calib.FILTER_LIST = 'cal/filters.fits'
muse_scipost.calib.SKY_LINES = 'cal/sky_lines.fits'
muse_scipost.calib.EXTINCT_TABLE = 'cal/extinction_paranal.fits'
muse_scipost.calib.STD_RESPONSE = 'std/STD_RESPONSE_moffat.fits'
muse_scipost.calib.LSF_PROFILE = [('cal/LSF_PROFILE-%02i.fits') % ifu
                                  for ifu in range(1, 25)]
muse_scipost.calib.STD_TELLURIC = 'std/STD_TELLURIC_moffat.fits'
muse_scipost.param.filter = 'white, Johnson_V, Cousins_R, Cousins_I'
muse_scipost.param.save = 'cube,autocal,individual'
muse_scipost.param.skymodel_fraction = 0.75
muse_scipost.param.autocalib = 'deepfield'
muse_scipost.param.format = 'xCube'
muse_scipost([('PIXTABLE_OBJECT_0001-%02i.fits' % (ifu))
               for ifu in range(1, 25) ]
```

In this case, one should also optimize the sky subtraction to use a larger fraction of the field as sky, as was done here with 75%. On a field which contains a big object or is filled with the target, this method cannot be used.



To check, if the autocalibration worked well, one can plot the factors stored in the AUTOCAL\_FACTORS table, e.g. with the mpdaf.drs.plot\_autocal\_factors() function of the MPDAF Python package<sup>1</sup>.

Since autocalibration benefits from a contiguous sky background definition, external data (e.g. HST imaging) can be used to better define sky regions, by feeding a SKY\_MASK file into the pipeline. Such an integer image contains 1 at positions of sky background and 0 at positions of objects. A trick is to use a gnomonic world coordinate system in the FITS header of the SKY\_MASK. Then it can be used for multiple MUSE exposures of the same field. See A.1.3 for format details. Note that in this case, an OFFSET\_LIST (see Sect. 8.6) should also be given to align the MUSE exposures with the external WCS. The modified input of the above run of **muse** scipost is then:

In case your data contains a large object, and autocalibration is not possible directly, because in each exposure some slices are completely covered by the target, a workaround might be to use an iterative procedure: (1) Run **muse\_scipost** as above, using autocalibration on all exposures involved, be sure to include "autocal" in the --save parameter and use --autocalib=deepfield. (2) Combine the AUTOCAL\_FACTORS tables of all exposures involved, using suitable rejection (e.g. using the median) on all corresponding rows, to produce a *typical* set of correction factors. This has to be done using an external tool, the mpdaf.drs.merge\_autocal\_factors() function of the MPDAF Python package could be useful here. (3) Rerun **muse\_scipost**, but this time use --autocalib=user and pass the "combined" AUTOCAL\_FACTORS as *input* to the recipe. This sometimes, but not always, results in smoother background without creating artifacts in the objects, especially if the exposures in question were taken close together in time and the dithering caused the objects to significantly move within the MUSE field of view (e.g. within one OB).

See section 7.2.4 for a full description of the **muse** scipost recipe.

#### 6.2.5 Combine Exposures

While the combination of different exposure can be done already in **muse\_scipost**, it may be easier to let that recipe process each exposure separately and save its post-processed pixel table as intermediate product. This allows the user to check the invididual datacube for proper reduction before starting the last step.

It also facilitates verification or computation of relative exposure offsets (see Sect. 8.6). Briefly, if the exposures are spatially offset (affected by the "wobble"), one can use the **muse\_exp\_align** recipe to automatically compute offsets using the IMAGE\_FOV images corresponding to each exposure. The offsets then get saved in the OFFSET\_LIST which is an optional input to **muse\_exp\_combine**. The same table can also be used to provide **muse exp combine** with relative exposure flux scales (see Sect. 8.7).

The individual pixel tables of each exposure can then be input into **muse\_exp\_combine** to create the final combined datacube. As with **muse\_scipost**, one could try to set the parameters **crsigma** and

<sup>&</sup>lt;sup>1</sup>The MUSE Python Data Analysis Framework (MPDAF) was developed at CRAL and is available from a gitlab (https://git-cral.univ-lyon1.fr/MUSE/mpdaf) or PyPI (https://pypi.org/project/mpdaf/). See https://mpdaf.readthedocs. io/ for its documentation.



pixfrac to smaller values if more overlapping exposures are part of the dataset.

The following example creates the same cube as in the three-exposure example in 6.2.4, but starts from individual pixel tables:

This needs far fewer inputs, since the reduced individual pixel tables are already fully calibrated. Note: as above, this example needs approximately 55 GB of free RAM to finish!



# Chapter 7

# **Recipe Parameters**

In following sections, the documentation of the invididual pipeline recipes is given, in terms of input data, recipe parameters, output products, and QC parameters created.

# 7.1 Pre-processing recipes

#### 7.1.1 muse bias

Combine several separate bias images into one master bias file.

#### Description

This recipe combines several separate bias images into one master bias file. The master bias contains the combined pixel values, in adu, of the raw bias exposures, with respect to the image combination method used.

Processing trims the raw data and records the overscan statistics, corrects the data levels using the overscan (if overscan is not "none") and combines the exposures using input parameters. The read-out noise is computed for each quadrant of the raw input images and stored as QC parameter. The variance extension is filled with an initial value accordingly, before image combination. Further QC statistics are computed on the output master bias. Additionally, bad columns are searched for and marked in the data quality extension.

#### Input frames

| Category     | Type  | min | Description                                   |
|--------------|-------|-----|-----------------------------------------------|
| BIAS         | raw   | 3   | Raw bias (more than 3 frames allowed)         |
| BADPIX_TABLE | calib |     | Known bad pixels (optional, usually not used, |
|              |       |     | more than one frame allowed)                  |



| Parameter     | Type    | Values            | Description                                         |
|---------------|---------|-------------------|-----------------------------------------------------|
|               |         | default, other    | *                                                   |
| nifu          | int     | 0                 | IFU to handle. If set to 0, all IFUs are processed  |
|               |         |                   | serially. If set to -1, all IFUs are processed in   |
|               |         |                   | parallel.                                           |
| overscan      | string  | vpoly             | If this is "none", stop when detecting discrepant   |
|               |         |                   | overscan levels (see ovscsigma), for "offset" it    |
|               |         |                   | assumes that the mean overscan level represents     |
|               |         |                   | the real offset in the bias levels of the exposures |
|               |         |                   | involved, and adjusts the data accordingly; for     |
|               |         |                   | "vpoly", a polynomial is fit to the vertical over-  |
|               |         |                   | scan and subtracted from the whole quadrant.        |
| ovscreject    | string  | dcr               | This influences how values are rejected when        |
|               |         |                   | computing overscan statistics. Either no rejec-     |
|               |         |                   | tion at all ("none"), rejection using the DCR       |
|               |         |                   | algorithm ("dcr"), or rejection using an itera-     |
|               |         | 20                | tive constant fit ("fit").                          |
| ovscsigma     | double  | 30.               | If the deviation of mean overscan levels between    |
|               |         |                   | a raw input image and the reference image is        |
|               |         |                   | cossing If overscan="upply" this is used as         |
|               |         |                   | sigma rejection level for the iterative polynomial  |
|               |         |                   | fit (the level comparison is then done afterwards   |
|               |         |                   | with 100 x stdey to guard against incompatible      |
|               |         |                   | settings). Has no effect for overscan="offset".     |
| ovscignore    | int     | 3                 | The number of pixels of the overscan adjacent       |
|               |         |                   | to the data section of the CCD that are ignored     |
|               |         |                   | when computing statistics or fits.                  |
| combine       | string  | sigclip, average, | Type of image combination to use.                   |
|               |         | median, minmax,   |                                                     |
|               |         | sigclip           |                                                     |
| nlow          | int     | 1                 | Number of minimum pixels to reject with min-        |
|               |         |                   | max.                                                |
| nhigh         | int     | 1                 | Number of maximum pixels to reject with min-        |
| ,             |         | 4                 | max.                                                |
| nkeep         | int     | 1                 | Number of pixels to keep with minmax.               |
| lsigma        | double  | პ<br>ე            | Low sigma for pixel rejection with sigclip.         |
| losigmabadniy | double  | 30                | Low sigma to find dark columns in the combined      |
|               | double  | <b>J</b> U.       | bias                                                |
| hisigmahadnix | double  | 3.                | High sigma to find bright columns in the com-       |
| morginaoaupix | uoubie  |                   | bined bias                                          |
| merge         | boolean | false             | Merge output products from different IFUs into      |
| 0-            |         |                   | a common file.                                      |

The following product frames are created by the recipe:



| Default file name | Description |
|-------------------|-------------|
| MASTER_BIAS       | Master bias |

#### Quality control parameters

The following quality control parameters are available for the **muse** bias products:

QC.BIAS.INPUTi.NSATURATED Number of saturated pixels in raw bias i in input list QC.BIAS.MASTERn.MEDIAN Median value of master bias in quadrant n QC.BIAS.MASTERn.MEAN Mean value of master bias in quadrant n QC.BIAS.MASTERn.STDEV Standard deviation value of master bias in quadrant n QC.BIAS.MASTERn.MIN Minimum value of master bias in quadrant n Maximum value of master bias in quadrant n QC.BIAS.MASTERn.MAX QC.BIAS.MASTERn.RON Read-out noise in quadrant n determined from difference images of each adjacent pair of biases in the input dataset in randomly placed windows QC.BIAS.MASTERn.RONERR Read-out noise error in quadrant n determined from difference images of each adjacent pair of biases in the input dataset in randomly placed windows QC.BIAS.MASTERn.SLOPE.X Average horizontal slope of master bias in quadrant n QC.BIAS.MASTERn.SLOPE.Y Average vertical slope of master bias in quadrant n QC.BIAS.MASTER.NBADPIX Bad pixels found as part of the bad column search in the master bias QC.BIAS.MASTER.NSATURATED Number of saturated pixels in output data Average of the raw median values of all input files in quadrant n QC.BIAS.LEVELn.MEAN QC.BIAS.LEVELn.STDEV Standard deviation of the raw median values of all input files in quadrant n QC.BIAS.LEVELn.MEDIAN Median of the raw median values of all input files in quadrant n

#### 7.1.2 muse dark

Combine several separate dark images into one master dark file and locate hot pixels.

#### Description

This recipe combines several separate dark images into one master dark file. The master dark contains the combined pixel values of the raw dark exposures, with respect to the image combination method used and normalization time specified.

Processing trims the raw data and records the overscan statistics, subtracts the bias (taking account of the overscan, if --overscan is not "none") from each raw input image, converts them from adu to count, scales them according to their exposure time, and combines them using input parameters. Hot pixels are then identified using image statistics and marked in the data quality extension. The combined image is normalized to 1 hour exposure time. QC statistics are computed on the output master dark.

If --model=true, a smooth polynomial model of the combined master dark is computed, created from several individual 2D polynomials to describe different features visible in MUSE dark frames. It is only advisable to use this, if the master dark is the result of at least 50 individual long dark exposures.

#### Input frames



| Category     | Type  | min | Description                                   |
|--------------|-------|-----|-----------------------------------------------|
| DARK         | raw   | 3   | Raw dark (more than 3 frames allowed)         |
| MASTER_BIAS  | calib | 1   | Master bias                                   |
| BADPIX_TABLE | calib |     | Known bad pixels (optional, usually not used, |
|              |       |     | more than one frame allowed)                  |

| Parameter  | Type   | Values            | Description                                         |
|------------|--------|-------------------|-----------------------------------------------------|
|            |        | default, other    |                                                     |
| nifu       | int    | 0                 | IFU to handle. If set to 0, all IFUs are processed  |
|            |        |                   | serially. If set to -1, all IFUs are processed in   |
|            |        |                   | parallel.                                           |
| overscan   | string | vpoly             | If this is "none", stop when detecting discrepant   |
|            |        |                   | overscan levels (see ovscsigma), for "offset" it    |
|            |        |                   | assumes that the mean overscan level represents     |
|            |        |                   | the real offset in the bias levels of the exposures |
|            |        |                   | involved, and adjusts the data accordingly; for     |
|            |        |                   | "vpoly", a polynomial is fit to the vertical over-  |
|            |        |                   | scan and subtracted from the whole quadrant.        |
| ovscreject | string | dcr               | This influences how values are rejected when        |
|            |        |                   | computing overscan statistics. Either no rejec-     |
|            |        |                   | tion at all ("none"), rejection using the DCR       |
|            |        |                   | algorithm ("dcr"), or rejection using an itera-     |
|            |        |                   | tive constant fit ("fit").                          |
| ovscsigma  | double | 30.               | If the deviation of mean overscan levels between    |
|            |        |                   | a raw input image and the reference image is        |
|            |        |                   | higher than ovscsigma x stdev, stop the pro-        |
|            |        |                   | cessing. If overscan="vpoly", this is used as       |
|            |        |                   | sigma rejection level for the iterative polynomial  |
|            |        |                   | fit (the level comparison is then done afterwards   |
|            |        |                   | with  100 x stdev  to guard against incompatible    |
|            |        |                   | settings). Has no effect for overscan="offset".     |
| ovscignore | int    | 3                 | The number of pixels of the overscan adjacent       |
|            |        |                   | to the data section of the CCD that are ignored     |
|            |        |                   | when computing statistics or fits.                  |
| combine    | string | sigclip, average, | Type of image combination to use.                   |
|            |        | median, minmax,   |                                                     |
|            |        | sigclip           |                                                     |
| nlow       | int    | 1                 | Number of minimum pixels to reject with min-        |
|            |        |                   | max.                                                |
| nhigh      | int    | 1                 | Number of maximum pixels to reject with min-        |
|            |        |                   | max.                                                |
| nkeep      | int    | 1                 | Number of pixels to keep with minmax.               |
| lsigma     | double | 3                 | Low sigma for pixel rejection with sigclip.         |
| hsigma     | double | 3                 | High sigma for pixel rejection with sigclip.        |
|            |        |                   | Continued on next page                              |



| – continued from pre- | vious pag | e              |                                                 |
|-----------------------|-----------|----------------|-------------------------------------------------|
| Parameter             | Type      | Values         | Description                                     |
|                       |           | default, other |                                                 |
| hotsigma              | double    | 5              | Sigma level, in terms of median deviation above |
|                       |           |                | the median dark level, above which a pixel is   |
|                       |           |                | detected and marked as 'hot'.                   |
| model                 | boolean   | false          | Model the master dark using a set of polynomi-  |
|                       |           |                | als.                                            |
| merge                 | boolean   | false          | Merge output products from different IFUs into  |
|                       |           |                | a common file.                                  |

The following product frames are created by the recipe:

| Default file name | Description                              |
|-------------------|------------------------------------------|
| MASTER_DARK       | Master dark                              |
| MODEL_DARK        | Model of the master dark (ifmodel=true). |

#### Quality control parameters

The following quality control parameters are available for the **muse dark** products:

QC.DARK.INPUTi.NSATURATED Number of saturated pixels in raw dark i in input list QC.DARK.MASTER.NBADPIX Number of bad pixels determined from master dark Median value of the master dark QC.DARK.MASTER.MEDIAN Mean value of the master dark QC.DARK.MASTER.MEAN Standard deviation of the master dark QC.DARK.MASTER.STDEV QC.DARK.MASTER.MIN Minimum value of the master dark Maximum value of the master dark QC.DARK.MASTER.MAX Dark current measured on master dark in randomly placed windows QC.DARK.MASTER.DC Dark current error measured on master dark in randomly placed windows QC.DARK.MASTER.DCERR QC.DARK.MASTER.NSATURATED Number of saturated pixels in output data

#### 7.1.3 muse flat

Combine several separate flat images into one master flat file, trace slice locations, and locate dark pixels.

#### Description

This recipe combines several separate flat-field images into one master flat-field file and traces the location of the slices on the CCD. The master flat contains the combined pixel values of the raw flat exposures, with respect to the image combination method used, normalized to the mean flux. The trace table contains polynomials defining the location of the slices on the CCD.

Processing trims the raw data and records the overscan statistics, subtracts the bias (taking account of the overscan, if --overscan is not "none"), and optionally, the dark from each raw input image, converts them from adu to count, scales them according to their exposure time, and combines the exposures using input parameters.



To trace the position of the slices on the CCD, their edges are located using a threshold method. The edge detection is repeated at given intervals thereby tracing the central position (the mean of both edges) and width of each slit vertically across the CCD. Deviant positions of detections on CCD rows can be detected and excluded before fitting a polynomial to all positions measured for one slice. The polynomial parameters for each slice are saved in the output trace table.

Finally, the area between the now known slice edges is searched for dark (and bright) pixels, using statistics in each row of the master flat.

#### Input frames

| Category     | Type                   | min | Description                                   |
|--------------|------------------------|-----|-----------------------------------------------|
| FLAT         | raw                    | 3   | Raw flat (more than 3 frames allowed)         |
| MASTER_BIAS  | $\operatorname{calib}$ | 1   | Master bias                                   |
| MASTER_DARK  | $\operatorname{calib}$ |     | Master dark (optional, usually not used)      |
| BADPIX_TABLE | $\operatorname{calib}$ |     | Known bad pixels (optional, usually not used, |
|              |                        |     | more than one frame allowed)                  |

| Parameter  | Туре   | Values         | Description                                         |
|------------|--------|----------------|-----------------------------------------------------|
|            |        | default, other |                                                     |
| nifu       | int    | 0              | IFU to handle. If set to 0, all IFUs are processed  |
|            |        |                | serially. If set to -1, all IFUs are processed in   |
|            |        |                | parallel.                                           |
| overscan   | string | vpoly          | If this is "none", stop when detecting discrepant   |
|            |        |                | overscan levels (see ovscsigma), for "offset" it    |
|            |        |                | assumes that the mean overscan level represents     |
|            |        |                | the real offset in the bias levels of the exposures |
|            |        |                | involved, and adjusts the data accordingly; for     |
|            |        |                | "vpoly", a polynomial is fit to the vertical over-  |
|            |        |                | scan and subtracted from the whole quadrant.        |
| ovscreject | string | dcr            | This influences how values are rejected when        |
|            |        |                | computing overscan statistics. Either no rejec-     |
|            |        |                | tion at all ("none"), rejection using the DCR       |
|            |        |                | algorithm ("dcr"), or rejection using an itera-     |
|            |        |                | tive constant fit ("fit").                          |
| ovscsigma  | double | 30.            | If the deviation of mean overscan levels between    |
|            |        |                | a raw input image and the reference image is        |
|            |        |                | higher than  ovscsigma x stdev , stop the pro-      |
|            |        |                | cessing. If overscan="vpoly", this is used as       |
|            |        |                | sigma rejection level for the iterative polynomial  |
|            |        |                | fit (the level comparison is then done afterwards   |
|            |        |                | with  100 x stdev  to guard against incompatible    |
|            |        |                | settings). Has no effect for overscan="offset".     |
| ovscignore | int    | 3              | The number of pixels of the overscan adjacent       |
|            |        |                | to the data section of the CCD that are ignored     |
|            |        |                | when computing statistics or fits.                  |
|            |        |                | Continued on next page                              |



| – continued from pre- | vious page | Э                                   |                                                  |
|-----------------------|------------|-------------------------------------|--------------------------------------------------|
| Parameter             | Type       | Values                              | Description                                      |
|                       |            | $\mathbf{default},  \mathrm{other}$ |                                                  |
| combine               | string     | sigclip, average,                   | Type of combination to use                       |
|                       |            | median, minmax,                     |                                                  |
|                       |            | sigclip                             |                                                  |
| nlow                  | int        | 1                                   | Number of minimum pixels to reject with min-     |
|                       |            |                                     | max                                              |
| nhigh                 | int        | 1                                   | Number of maximum pixels to reject with min-     |
|                       |            |                                     | max                                              |
| nkeep                 | int        | 1                                   | Number of pixels to keep with minmax             |
| lsigma                | double     | 3                                   | Low sigma for pixel rejection with sigclip       |
| hsigma                | double     | 3                                   | High sigma for pixel rejection with sigclip      |
| trace                 | boolean    | true                                | Trace the position of the slices on the master   |
|                       |            |                                     | flat                                             |
| nsum                  | int        | 32                                  | Number of lines over which to average when       |
|                       |            |                                     | tracing                                          |
| order                 | int        | 5                                   | Order of polynomial fit to the trace             |
| edgefrac              | double     | 0.5                                 | Fractional change required to identify edge      |
|                       |            |                                     | when tracing                                     |
| losigmabadpix         | double     | 5.                                  | Low sigma to find dark pixels in the master flat |
| hisigmabadpix         | double     | 5.                                  | High sigma to find bright pixels in the master   |
|                       |            |                                     | flat                                             |
| samples               | boolean    | false                               | Create a table containing all tracing sample     |
|                       |            |                                     | points.                                          |
| merge                 | boolean    | false                               | Merge output products from different IFUs into   |
|                       |            |                                     | a common file.                                   |

The following product frames are created by the recipe:

| Default file name | Description                                    |
|-------------------|------------------------------------------------|
| MASTER_FLAT       | Master flat                                    |
| TRACE_TABLE       | Trace table                                    |
| TRACE_SAMPLES     | Table containing all tracing sample points, if |
|                   | samples=true                                   |

#### Quality control parameters

The following quality control parameters are available for the **muse flat** products:

Median value of raw flat i in input list QC.FLAT.INPUTi.MEDIAN QC.FLAT.INPUTi.MEAN Mean value of raw flat i in input list Standard deviation of raw flat i in input list QC.FLAT.INPUTi.STDEV QC.FLAT.INPUTi.MIN Minimum value of raw flat i in input list Maximum value of raw flat i in input list QC.FLAT.INPUTi.MAX QC.FLAT.INPUTi.NSATURATED Number of saturated pixels in raw flat i in input list Median value of the master flat before normalization QC.FLAT.MASTER.MEDIAN Mean value of the master flat before normalization QC.FLAT.MASTER.MEAN



```
Standard deviation of the master flat before normalization
QC.FLAT.MASTER.STDEV
QC.FLAT.MASTER.MIN
                       Minimum value of the master flat before normalization
QC.FLAT.MASTER.MAX
                       Maximum value of the master flat before normalization
QC.FLAT.MASTER.INTFLUX
                           Flux value, integrated over the whole master flat field before normaliza-
       tion
QC.FLAT.MASTER.NSATURATED
                               Number of saturated pixels in output data
                                Mean value around the vertical center of slice j before normalization
QC.FLAT.MASTER.SLICEj.MEAN
QC.FLAT.MASTER.SLICEj.STDEV
                                 Standard deviation around the vertical center of slice j before nor-
       malization
QC.TRACE.SLICE_L.XPOS
                          Location of midpoint of leftmost slice
                          Tilt of leftmost slice, measured as angle from vertical direction
QC.TRACE.SLICE_L.TILT
QC.TRACE.SLICE_R.XPOS
                          Location of midpoint of rightmost slice
QC.TRACE.SLICE_R.TILT
                          Tilt of rightmost slice, measured as angle from vertical direction
QC.TRACE.SLICEj.MAXSLOPE
                              The maximum slope of the derived tracing functions of slice j within
       the CCD.
QC.TRACE.SLICE10.WIDTH
                           Width of top left slice in the IFU (10 on CCD)
QC.TRACE.SLICE46.WIDTH
                           Width of top right slice in the IFU (46 on CCD)
QC.TRACE.SLICE3.WIDTH
                          Width of bottom left slice in the IFU (3 on CCD)
QC.TRACE.SLICE39.WIDTH
                           Width of bottom right slice in the IFU (39 on CCD)
                           Median width of slices
QC.TRACE.WIDTHS.MEDIAN
QC.TRACE.WIDTHS.MEAN
                         Mean width of slices
                          Standard deviation of widths of slices
QC.TRACE.WIDTHS.STDEV
QC.TRACE.WIDTHS.MIN
                        Minimum width of slices
                        Maximum width of slices
QC.TRACE.WIDTHS.MAX
QC.TRACE.GAPS.MEDIAN
                         Median of gaps between slices
QC.TRACE.GAPS.MEAN
                       Mean of gaps between slices
                        Standard deviation of gaps between slices
QC.TRACE.GAPS.STDEV
QC.TRACE.GAPS.MIN
                      Minimum of gap between slices
QC.TRACE.GAPS.MAX
                      Maximum gap between slices
```

#### 7.1.4 muse wavecal

Detect arc emission lines and determine the wavelength solution for each slice.

#### Description

This recipe detects arc emission lines and fits a wavelength solution to each slice of the instrument. The wavelength calibration table contains polynomials defining the wavelength solution of the slices on the CCD.

Processing trims the raw data and records the overscan statistics, subtracts the bias (taking account of the overscan, if --overscan is not "none") and converts them from adu to count. Optionally, the dark can be subtracted and the data can be divided by the flat-field, but this is not recommended. The data is then combined using input parameters, into separate images for each lamp.

To compute the wavelength solution, arc lines are detected at the center of each slice (using threshold detection on a S/N image) and subsequently assigned wavelengths, using pattern matching to identify lines from the input line catalog. Each line is then traced to the edges of the slice, using Gaussian centering in each CCD column. The Gaussians not only yield center, but also centering error, and line properties (e.g. FWHM). Deviant fits are detected using polynomial fits to each arc line (using the xorder parameter) and rejected. These analysis and measuring steps are carried out separately on images exposed by the different



arc lamps, reducing the amount of blending, that can otherwise influence line identification and Gaussian centering. The final two-dimensional fit uses all positions (of all lamps), their wavelengths, and the given polynomial orders to compute the final wavelength solution for each slice, iteratively rejecting outliers. This final fit can be either unweighted (fitweighting="uniform", for fastest processing) or weighted (other values of fitweighting, for higher accuracy).

#### Input frames

| Category     | Type                   | min | Description                                   |
|--------------|------------------------|-----|-----------------------------------------------|
| ARC          | raw                    | 1   | Raw arc lamp exposures                        |
| MASTER_BIAS  | calib                  | 1   | Master bias                                   |
| MASTER_DARK  | $\operatorname{calib}$ |     | Master dark (optional, usually not used)      |
| MASTER_FLAT  | $\operatorname{calib}$ |     | Master flat (optional, usually not used)      |
| TRACE_TABLE  | $\operatorname{calib}$ | 1   | Trace table                                   |
| LINE_CATALOG | $\operatorname{calib}$ | 1   | Arc line catalog                              |
| BADPIX_TABLE | $\operatorname{calib}$ |     | Known bad pixels (optional, usually not used, |
|              |                        |     | more than one frame allowed)                  |

| Parameter  | Type   | Values         | Description                                         |
|------------|--------|----------------|-----------------------------------------------------|
|            |        | default, other |                                                     |
| nifu       | int    | 0              | IFU to handle. If set to 0, all IFUs are processed  |
|            |        |                | serially. If set to -1, all IFUs are processed in   |
|            |        |                | parallel.                                           |
| overscan   | string | vpoly          | If this is "none", stop when detecting discrepant   |
|            |        |                | overscan levels (see ovscsigma), for "offset" it    |
|            |        |                | assumes that the mean overscan level represents     |
|            |        |                | the real offset in the bias levels of the exposures |
|            |        |                | involved, and adjusts the data accordingly; for     |
|            |        |                | "vpoly", a polynomial is fit to the vertical over-  |
|            |        |                | scan and subtracted from the whole quadrant.        |
| ovscreject | string | dcr            | This influences how values are rejected when        |
|            |        |                | computing overscan statistics. Either no rejec-     |
|            |        |                | tion at all ("none"), rejection using the DCR       |
|            |        |                | algorithm ("dcr"), or rejection using an itera-     |
|            |        |                | tive constant fit ("fit").                          |
| ovscsigma  | double | 30.            | If the deviation of mean overscan levels between    |
|            |        |                | a raw input image and the reference image is        |
|            |        |                | higher than  ovscsigma x stdev , stop the pro-      |
|            |        |                | cessing. If overscan="vpoly", this is used as       |
|            |        |                | sigma rejection level for the iterative polynomial  |
|            |        |                | fit (the level comparison is then done afterwards   |
|            |        |                | with  100 x stdev  to guard against incompatible    |
|            |        |                | settings). Has no effect for overscan="offset".     |
|            |        |                | Continued on next page                              |



| – continued from pre- | vious page | 9                 |                                                     |
|-----------------------|------------|-------------------|-----------------------------------------------------|
| Parameter             | Туре       | Values            | Description                                         |
|                       |            | default, other    |                                                     |
| ovscignore            | int        | 3                 | The number of pixels of the overscan adjacent       |
|                       |            |                   | to the data section of the CCD that are ignored     |
|                       |            |                   | when computing statistics or fits.                  |
| combine               | string     | sigclip, average, | Type of lampwise image combination to use.          |
|                       |            | median, minmax,   |                                                     |
|                       |            | sigclip           |                                                     |
| sigma                 | double     | 1.0               | Sigma level used to detect arc emission lines       |
|                       |            |                   | above the median background level in the S/N        |
|                       |            |                   | image of the central column of each slice           |
| dres                  | double     | 0.05              | The allowed range of resolutions for pattern        |
|                       |            |                   | matching (of detected arc lines to line list) in    |
|                       |            |                   | fractions relative to the expected value            |
| tolerance             | double     | 0.1               | Tolerance for pattern matching (of detected arc     |
|                       |            |                   | lines to line list)                                 |
| xorder                | int        | 2                 | Order of the polynomial for the horizontal cur-     |
|                       |            |                   | vature within each slice                            |
| yorder                | int        | 6                 | Order of the polynomial used to fit the disper-     |
|                       |            |                   | sion relation                                       |
| linesigma             | double     | -1.0              | Sigma level for iterative rejection of deviant fits |
|                       |            |                   | for each arc line within each slice, a negative     |
|                       |            |                   | value means to use the default $(2.5)$ .            |
| residuals             | boolean    | false             | Create a table containing residuals of the fits to  |
|                       |            |                   | the data of all arc lines. This is useful to assess |
|                       |            |                   | the quality of the wavelength solution in detail.   |
| fitsigma              | double     | -1.0              | Sigma level for iterative rejection of deviant      |
|                       |            |                   | datapoints during the final polynomial wave-        |
|                       |            |                   | length solution within each slice, a negative       |
|                       |            |                   | value means to use the default $(3.0)$ .            |
| fitweighting          | string     | cerrscatter,      | Type of weighting to use in the final polynomial    |
|                       | _          | uniform,          | wavelength solution fit, using centroiding error    |
|                       |            | cerr, scatter,    | estimate and/or scatter of each single line as      |
|                       |            | cerrscatter       | estimates of its accuracy.                          |
| saveimages            | boolean    | false             | Save                                                |
| merge                 | boolean    | false             | Merge output products from different IFUs into      |
|                       |            |                   | a common file.                                      |

The following product frames are created by the recipe:

| Default file name | Description                                       |
|-------------------|---------------------------------------------------|
| WAVECAL_TABLE     | Wavelength calibration table                      |
| WAVECAL_RESIDUALS | Fit residuals of all arc lines (ifresiduals=true) |
| ARC_RED_LAMP      | Reduced ARC image, per lamp (ifsaveimages=true)   |



#### Quality control parameters

The following quality control parameters are available for the **muse** wavecal products: QC.WAVECAL.SLICEj.LINES.NDET Number of detected arc lines in slice j QC.WAVECAL.SLICEj.LINES.NID Number of identified arc lines in slice j QC.WAVECAL.SLICEj.LINES.PEAK.MEAN Mean peak count level above background of detected arc lines in slice j QC.WAVECAL.SLICEj.LINES.PEAK.STDEV Standard deviation of peak count level above background of detected arc lines in slice j QC.WAVECAL.SLICEj.LINES.PEAK.MIN Peak count level above background of the faintest line in slice i QC.WAVECAL.SLICEj.LINES.PEAK.MAX Peak count level above background of the brightest line in slice j QC.WAVECAL.SLICEj.LAMP1.LINES.PEAK.MEAN Mean peak count level of lines of lamp l above background of detected arc lines in slice j. QC.WAVECAL.SLICEj.LAMP1.LINES.PEAK.STDEV Standard deviation of peak count level of lines of

- lamp l above background of detected arc lines in slice j.
  QC.WAVECAL.SLICEj.LAMP1.LINES.PEAK.MAX Peak count level above background of the brightest
  line of lamp l in slice j.
- QC.WAVECAL.SLICE J.LINES.FWHM.MEAN Mean FWHM of detected arc lines in slice j
- QC.WAVECAL.SLICEj.LINES.FWHM.STDEV Standard deviation of FWHM of detected arc lines in slice
- QC.WAVECAL.SLICEj.LINES.FWHM.MIN Minimum FWHM of detected arc lines in slice j
- QC.WAVECAL.SLICEj.LINES.FWHM.MAX Maximum FWHM of detected arc lines in slice j
- QC.WAVECAL.SLICEj.RESOL Mean spectral resolution R determined in slice j
- QC.WAVECAL.SLICEj.FIT.NLINES Number of arc lines used in calibration solution fit in slice j
- ${\tt QC.WAVECAL.SLICEj.FIT.RMS} \quad {\rm RMS} \ {\rm of} \ {\rm the} \ {\rm wavelength} \ {\rm calibration} \ {\rm fit} \ {\rm in} \ {\rm slice} \ {\rm j}$
- QC.WAVECAL.SLICEj.DWLEN.BOTTOM Difference in wavelength computed for the bottom left and bottom right corners of the slice on the CCD
- QC.WAVECAL.SLICEj.DWLEN.TOP Difference in wavelength computed for the top left and top right corners of the slice on the CCD
- QC.WAVECAL.SLICEj.WLPOS Position of wavelength given in WLEN in slice j
- QC.WAVECAL.SLICEj.WLEN Wavelength associated to WLPOS in slice j
- QC.WAVECAL.NSATURATED.LAMP1 Number of saturated pixels in output data of lamp l
- QC.WAVECAL.INPUTI.NSATURATED Number of saturated pixels in raw arc i in input list
- QC.WAVECAL.NSATURATED Number of saturated pixels in output data

#### 7.1.5 muse lsf

Compute the LSF

#### Description

Compute the slice and wavelength dependent LSF from a lines spectrum (ARC lamp).

#### Input frames

At least one raw frame of the category ARC or ARC\_LSF is required.



| Category      | Type  | min | Description                                   |
|---------------|-------|-----|-----------------------------------------------|
| ARC           | raw   |     | Raw arc lamp exposures (from a standard arc   |
|               |       |     | sequence)                                     |
| ARC_LSF       | raw   |     | Raw arc lamp exposures (from a long LSF arc   |
|               |       |     | sequence)                                     |
| MASTER_BIAS   | calib | 1   | Master bias                                   |
| MASTER_DARK   | calib |     | Master dark (optional, usually not used)      |
| MASTER_FLAT   | calib |     | Master flat (optional)                        |
| TRACE_TABLE   | calib | 1   | Trace table                                   |
| WAVECAL_TABLE | calib | 1   | Wavelength calibration table                  |
| BADPIX_TABLE  | calib |     | Known bad pixels (optional, usually not used, |
|               |       |     | more than one frame allowed)                  |
| LINE_CATALOG  | calib | 1   | Arc line catalog                              |

# **Recipe parameters**

| Parameter       | Type    | Values         | Description                                         |
|-----------------|---------|----------------|-----------------------------------------------------|
|                 |         | default, other |                                                     |
| nifu            | int     | 0              | IFU to handle. If set to 0, all IFUs are processed  |
|                 |         |                | serially. If set to -1, all IFUs are processed in   |
|                 |         |                | parallel.                                           |
| overscan        | string  | vpoly          | If this is "none", stop when detecting discrepant   |
|                 |         |                | overscan levels (see ovscsigma), for "offset" it    |
|                 |         |                | assumes that the mean overscan level represents     |
|                 |         |                | the real offset in the bias levels of the exposures |
|                 |         |                | involved, and adjusts the data accordingly; for     |
|                 |         |                | "vpoly", a polynomial is fit to the vertical over-  |
|                 |         |                | scan and subtracted from the whole quadrant.        |
| ovscreject      | string  | dcr            | This influences how values are rejected when        |
|                 |         |                | computing overscan statistics. Either no rejec-     |
|                 |         |                | tion at all ("none"), rejection using the DCR       |
|                 |         |                | algorithm ("dcr"), or rejection using an itera-     |
|                 |         |                | tive constant fit ("fit").                          |
| ovscsigma       | double  | 30.            | If the deviation of mean overscan levels between    |
|                 |         |                | a raw input image and the reference image is        |
|                 |         |                | higher than  ovscsigma x stdev , stop the pro-      |
|                 |         |                | cessing. If overscan="vpoly", this is used as       |
|                 |         |                | sigma rejection level for the iterative polynomial  |
|                 |         |                | ht (the level comparison is then done afterwards    |
|                 |         |                | with  100 x stdev  to guard against incompatible    |
|                 |         | 0              | settings). Has no effect for overscan="offset".     |
| ovscignore      | int     | 3              | The number of pixels of the overscan adjacent       |
|                 |         |                | to the data section of the CCD that are ignored     |
| anno aubtroated | haalaan | false          | when computing statistics of fits.                  |
| save_subtracted | int     | 1a1se<br>2     | Save the pixel table after the LSF subtraction.     |
| laf range       | double  | อ<br>75        | Wavelength window (half size) around each line      |
|                 | double  | 1.0            | to ostimato I SF                                    |
|                 |         |                | Continued on port name                              |
|                 |         |                | Continued on next page                              |

63



| – continued from previous page |                      |                                     |                                                |
|--------------------------------|----------------------|-------------------------------------|------------------------------------------------|
| Parameter                      | Type                 | Values                              | Description                                    |
|                                |                      | $\mathbf{default},  \mathrm{other}$ |                                                |
| lsf_size                       | int                  | 150                                 | Image size in LSF direction                    |
| lambda_size                    | $\operatorname{int}$ | 30                                  | Image size in line wavelength direction        |
| lsf_regression_windo           | wdouble              | 0.7                                 | Size of the regression window in LSF direction |
| merge                          | boolean              | false                               | Merge output products from different IFUs into |
|                                |                      |                                     | a common file.                                 |
| combine                        | string               | sigclip, average,                   | Type of lampwise image combination to use.     |
|                                |                      | median, minmax,                     |                                                |
|                                |                      | sigclip                             |                                                |
| method                         | string               | $\mathbf{interpolate},$             | LSF generation method. Depending on this       |
|                                |                      | interpolate,                        | value, either an interpolated LSF cube is cre- |
|                                |                      | hermit                              | ated, or a table with the parameters of a her- |
|                                |                      |                                     | mitean gaussian.                               |

The following product frames are created by the recipe:

| Default file name   | Description                                             |
|---------------------|---------------------------------------------------------|
| LSF_PROFILE         | Slice specific LSF images, stacked into one data cube   |
|                     | per IFU.                                                |
| PIXTABLE_SUBTRACTED | Subtracted combined pixel table, if                     |
|                     | save_subtracted=true. This file contains only           |
|                     | the subtracted arc lines that contributed to the        |
|                     | LSF calculation. There are additional columns           |
|                     | line_lambda and line_flux with the reference wave-      |
|                     | length and the estimated line flux of the corresponding |
|                     | arc line.                                               |

#### Quality control parameters

The following quality control parameters are available for the **muse** lsf products:

QC.LSF.SLICEj.FWHM.MEAN Mean FWHM of the LSF slice j QC.LSF.SLICEj.FWHM.STDEV Standard deviation of the LSF in slice j QC.LSF.SLICEj.FWHM.MIN Minimum FWHM of the LSF in slice j QC.LSF.SLICEj.FWHM.MAX Maximum FWHM of the LSF in slice j

#### 7.1.6 muse twilight

Combine several twilight skyflats into one cube, compute correction factors for each IFU, and create a smooth 3D illumination correction.

#### Description

Processing first handles each raw input image separately: it trims the raw data and records the overscan statistics, subtracts the bias (taking account of the overscan, if --overscan is not "none"), converts the



images from adu to count, subtracts the dark, divides by the flat-field and combines all the exposures using input parameters.

The input calibrations geometry table, trace table, and wavelength calibration table are used to assign 3D coordinates to each CCD-based pixel, thereby creating a pixel table from the master sky-flat. These pixel tables are then cut in wavelength using the --lambdamin and --lambdamax parameters. The integrated flux in each IFU is computed as the sum of the data in the pixel table, and saved in the header, to be used later as estimate for the relative throughput of each IFU.

If an ILLUM exposure was given as input, it is then used to correct the relative illumination between all slices of one IFU. For this, the data of each slice within the pixel table of each IFU is multiplied by the normalized median flux of that slice in the ILLUM exposure.

The pixel tables of all IFUs are then merged, using the integrated fluxes as inverse scaling factors, and a cube is reconstructed from the merged dataset, using given parameters. A white-light image is created from the cube. This skyflat cube is then saved to disk, with the white-light image as one extension.

To construct a smooth 3D illumination correction, the cube is post-processed in the following way: the white-light image is used to create a mask of the illuminated area. From this area, the optional vignetting mask is removed. The smoothing is then computed for each plane of the cube: the illuminated area is smoothed (by a 5x7 median filter), normalized, fit with a 2D polynomial (of given polynomial orders), and normalized again. A smooth white image is then created by collapsing the smooth cube.

If a vignetting mask was given or NFM data is processed, an area close to the edge of the MUSE field is used to compute a 2D correction for the vignetted area: the original unsmoothed white-light image is corrected for large scale gradients by dividing it with the smooth white image. The residuals in the edge area (as defined by the input mask or hardcoded for NFM) are then smoothed using input parameters. This smoothed vignetting correction is the multiplied onto each plane of the smooth cube, normalizing each plane again.

This twilight cube is then saved to disk.

#### Input frames

| Category        | Type  | min | Description                                      |
|-----------------|-------|-----|--------------------------------------------------|
| SKYFLAT         | raw   | 3   | Raw twilight skyflat (more than 3 frames al-     |
|                 |       |     | lowed)                                           |
| ILLUM           | raw   |     | Single optional raw (attached/illumination)      |
|                 |       |     | flat-field exposure (optional)                   |
| MASTER_BIAS     | calib | 1   | Master bias                                      |
| MASTER_DARK     | calib |     | Master dark (optional, usually not used)         |
| MASTER_FLAT     | calib | 1   | Master flat                                      |
| BADPIX_TABLE    | calib |     | Known bad pixels (optional, usually not used,    |
|                 |       |     | more than one frame allowed)                     |
| TRACE_TABLE     | calib | 1   | Tracing table for all slices                     |
| WAVECAL_TABLE   | calib | 1   | Wavelength calibration table                     |
| GEOMETRY_TABLE  | calib | 1   | Relative positions of the slices in the field of |
|                 |       |     | view                                             |
| VIGNETTING_MASK | calib |     | Mask to mark vignetted regions in the MUSE       |
|                 |       |     | field of view (optional)                         |



| Parameter  | Type    | Values                              | Description                                         |
|------------|---------|-------------------------------------|-----------------------------------------------------|
|            |         | $\mathbf{default},  \mathrm{other}$ |                                                     |
| overscan   | string  | vpoly                               | If this is "none", stop when detecting discrepant   |
|            |         |                                     | overscan levels (see ovscsigma), for "offset" it    |
|            |         |                                     | assumes that the mean overscan level represents     |
|            |         |                                     | the real offset in the bias levels of the exposures |
|            |         |                                     | involved, and adjusts the data accordingly; for     |
|            |         |                                     | "vpoly", a polynomial is fit to the vertical over-  |
|            |         |                                     | scan and subtracted from the whole quadrant.        |
| ovscreject | string  | dcr                                 | This influences how values are rejected when        |
|            |         |                                     | computing overscan statistics. Either no rejec-     |
|            |         |                                     | tion at all ("none"), rejection using the DCR       |
|            |         |                                     | algorithm ("dcr"), or rejection using an itera-     |
|            |         |                                     | tive constant fit ("fit").                          |
| ovscsigma  | double  | 30.                                 | If the deviation of mean overscan levels between    |
|            |         |                                     | a raw input image and the reference image is        |
|            |         |                                     | higher than ovscsigma x stdev, stop the pro-        |
|            |         |                                     | cessing. If overscan="vpoly", this is used as       |
|            |         |                                     | sigma rejection level for the iterative polynomial  |
|            |         |                                     | fit (the level comparison is then done afterwards   |
|            |         |                                     | with 100 x stdev to guard against incompatible      |
|            |         | 2                                   | settings). Has no effect for overscan="offset".     |
| ovscignore | int     | 3                                   | The number of pixels of the overscan adjacent       |
|            |         |                                     | to the data section of the CCD that are ignored     |
| 1.:        |         | -:1:                                | The set of the statistics of fits.                  |
| combine    | string  | sigclip, average,                   | Type of combination to use                          |
|            |         | sigelin                             |                                                     |
| nlow       | int     | 1                                   | Number of minimum pixels to reject with min-        |
| mow        | 1110    | 1                                   | max                                                 |
| nhigh      | int     | 1                                   | Number of maximum pixels to reject with min-        |
| mign       | 1110    | 1                                   | max                                                 |
| nkeen      | int     | 1                                   | Number of pixels to keep with minmax                |
| lsigma     | double  | - 3                                 | Low sigma for pixel rejection with sigclip          |
| hsigma     | double  | 3                                   | High sigma for pixel rejection with sigclip         |
| scale      | boolean | false                               | Scale the individual images to a common expo-       |
|            |         |                                     | sure time before combining them.                    |
| resample   | string  | drizzle, nearest,                   | The resampling technique to use for the final       |
| -          |         | linear, quadratic,                  | output cube.                                        |
|            |         | renka, drizzle,                     |                                                     |
|            |         | lanczos                             |                                                     |
| crtype     | string  | median, iraf,                       | Type of statistics used for detection of cos-       |
|            |         | mean, median                        | mic rays during final resampling. "iraf" uses       |
|            |         |                                     | the variance information, "mean" uses standard      |
|            |         |                                     | (mean/stdev) statistics, "median" uses median       |
|            |         |                                     | and the median median of the absolute median        |
|            |         |                                     | deviation.                                          |
|            |         |                                     | Continued on next page                              |



| – continued from previous page |        |                |                                                   |
|--------------------------------|--------|----------------|---------------------------------------------------|
| Parameter                      | Туре   | Values         | Description                                       |
|                                |        | default, other |                                                   |
| crsigma                        | double | 50.            | Sigma rejection factor to use for cosmic ray re-  |
|                                |        |                | jection during final resampling. A zero or neg-   |
|                                |        |                | ative value switches cosmic ray rejection off.    |
| lambdamin                      | double | 5000.          | Minimum wavelength for twilight reconstruc-       |
|                                |        |                | tion.                                             |
| lambdamax                      | double | 9000.          | Maximum wavelength for twilight reconstruc-       |
|                                |        |                | tion.                                             |
| dlambda                        | double | 250.           | Sampling for twilight reconstruction, this        |
|                                |        |                | should result in planes of equal wavelength cov-  |
|                                |        |                | erage.                                            |
| xorder                         | int    | 2              | Polynomial order to use in x direction to fit the |
|                                |        |                | full field of view.                               |
| yorder                         | int    | 2              | Polynomial order to use in y direction to fit the |
|                                |        |                | full field of view.                               |

The following product frames are created by the recipe:

| Default file name | Description                                 |
|-------------------|---------------------------------------------|
| DATACUBE_SKYFLAT  | Cube of combined twilight skyflat exposures |
| TWILIGHT_CUBE     | Smoothed cube of twilight sky               |

#### Quality control parameters

The following quality control parameters are available for the **muse** twilight products:

```
QC.TWILIGHTm.INPUTi.MEDIAN
                               Median value of raw exposure i of IFU m in input list
QC.TWILIGHTm.INPUTi.MEAN
                             Mean value of raw exposure i of IFU m in input list
QC.TWILIGHTm.INPUTi.STDEV
                              Standard deviation of raw exposure i of IFU m in input list
                            Minimum value of raw exposure i of IFU m in input list
QC.TWILIGHTm.INPUTi.MIN
QC.TWILIGHTm.INPUTi.MAX
                            Maximum value of raw exposure i of IFU m in input list
                                    Number of saturated pixels in raw exposure i of IFU m in input
QC.TWILIGHTm.INPUTi.NSATURATED
      list
                               Median value of the combined exposures in IFU m
QC.TWILIGHTm.MASTER.MEDIAN
                             Mean value of the combined exposures in IFU m
QC.TWILIGHTm.MASTER.MEAN
QC.TWILIGHTm.MASTER.STDEV
                              Standard deviation of the combined exposures in IFU m
QC.TWILIGHTm.MASTER.MIN
                            Minimum value of the combined exposures in IFU m
QC.TWILIGHTm.MASTER.MAX
                            Maximum value of the combined exposures in IFU m
QC.TWILIGHTm.MASTER.INTFLUX
                                Flux integrated over the whole CCD of the combined exposures of
       IFU m
QC.TWILIGHTm.INTFLUX
                        Flux integrated over all slices of IFU m. Computed using the pixel table
       of the exposure.
```



#### 7.1.7 muse geometry

Compute relative location of the slices within the field of view and measure the instrumental PSF on the detectors.

#### Description

Processing first works separately on each IFU of the raw input data (in parallel): it trims the raw data and records the overscan statistics, subtracts the bias and converts them from adu to count. Optionally, the dark can be subtracted and the data can be divided by the flat-field. The data of all input mask exposures is then averaged. The averaged image together with the trace table and wavelength calibration as well as the line catalog are used to detect spots. The detection windows are used to measure the spots on all images of the sequence, the result is saved, with information on the measured PSF, in the spots tables.

Then properties of all slices are computed, first separately on each IFU to determine the peak position of the mask for each slice and its angle, subsequently the width and horizontal position. Then, the result of all IFUs is analyzed together to produce a refined horizontal position, applying global shifts to each IFU as needed. The vertical position is then determined using the known slice ordering on the sky; the relative peak positions are put into sequence, taking into account the vertical offsets of the pinholes in the mask. The table is then cleaned up from intermediate debug data. If the --smooth parameter is set to a positive value, it is used to do a sigma-clipped smoothing within each slicer stack, for a more regular appearance of the output table. The table is then saved.

As a last optional step, additional raw input data is reduced using the newly geometry to produce an image of the field of view. If these exposures contain smooth features, they can be used as a visual check of the quality of the geometrical calibration.

| Category      | Type  | min | Description                                    |
|---------------|-------|-----|------------------------------------------------|
| MASK          | raw   | 50  | The full exposure sequence of raw multi-       |
|               |       |     | pinhole mask images (more than 50 frames       |
|               |       |     | allowed)                                       |
| MASTER_BIAS   | calib | 1   | Master bias                                    |
| MASTER_DARK   | calib |     | Master dark (optional, usually not used)       |
| MASTER_FLAT   | calib |     | Master flat (optional, usually not used)       |
| TRACE_TABLE   | calib | 1   | Trace table                                    |
| WAVECAL_TABLE | calib | 1   | Wavelength calibration table                   |
| LINE_CATALOG  | calib | 1   | List of arc lines                              |
| BADPIX_TABLE  | calib |     | Known bad pixels (optional, usually not used,  |
|               |       |     | more than one frame allowed)                   |
| MASK_CHECK    | calib |     | Some other optional raw frame, ideally a trace |
|               |       |     | mask exposure or something else with smooth    |
|               |       |     | features. (optional, more than one frame al-   |
|               |       |     | lowed)                                         |

#### Input frames



| Parameter | Type   | Values         | Description                                   |
|-----------|--------|----------------|-----------------------------------------------|
|           |        | default, other |                                               |
| sigma     | double | 2.2            | Sigma detection level for spot detection, in  |
|           |        |                | terms of median deviation above the median.   |
| centroid  | string | gaussian,      | Type of centroiding and FWHM determina-       |
|           |        | barycenter,    | tion to use for all spot measurements: simple |
|           |        | gaussian       | barycenter method or using a Gaussian fit.    |
| smooth    | double | 1.5            | Use this sigma-level cut for smoothing of the |
|           |        |                | output table within each slicer stack. Set to |
|           |        |                | non-positive value to deactivate smoothing.   |

The following product frames are created by the recipe:

| Default file name   | Description                                                |  |  |
|---------------------|------------------------------------------------------------|--|--|
| MASK_REDUCED        | Reduced pinhole mask images                                |  |  |
| MASK_COMBINED       | Combined pinhole mask image                                |  |  |
| SPOTS_TABLE         | Measurements of all detected spots on all input images.    |  |  |
| GEOMETRY_UNSMOOTHED | Relative positions of the slices in the field of view (un- |  |  |
|                     | smoothed)                                                  |  |  |
| GEOMETRY_TABLE      | Relative positions of the slices in the field of view      |  |  |
| GEOMETRY_CUBE       | Cube of the field of view to check the geometry cali-      |  |  |
|                     | bration. It is restricted to the wavelength range given    |  |  |
|                     | in the parameters and contains an integrated image         |  |  |
|                     | ("white") over this range.                                 |  |  |
| GEOMETRY_CHECK      | Optional field of view image to check the geometry         |  |  |
|                     | calibration, integrated over the wavelength range given    |  |  |
|                     | in the parameters.                                         |  |  |

#### Quality control parameters

The following quality control parameters are available for the **muse** geometry products:

- QC.GEO.EXPi.FWHM.MEAN Average FWHM of all bright spots in exposure k.
- QC.GEO.EXPi.FWHM.MEDIAN Median FWHM of all bright spots in exposure k.
- QC.GEO.EXPi.FWHM.STDEV Standard deviation of FWHM of all bright spots in exposure k.
- QC.GEO.FWHM.MEAN Average of the average FWHM of all bright spots in all exposures.
- QC.GEO.FWHM.STDEV Standard deviation of the average FWHM of all bright spots in all exposures.
- QC.GEO.IFUm.ANGLE Angle of the mask with respect to the slicer system, computed as median angle of all slices of this IFU for which the measurement could be made.
- QC.GEO.IFUm.WLEN1 Nominal wavelength of arc line l.
- QC.GEO.IFUm.WLEN1.FLUX.MEAN Average integrated flux in all spots at reference wavelength l.
- QC.GEO.IFUm.WLEN1.FLUX.MEDIAN Median integrated flux in all spots at reference wavelength l.
- QC.GEO.IFUm.WLEN1.FLUX.STDEV Standard deviation of integrated flux in all spots at reference wavelength l.
- QC.GEO.IFUm.GAPPOS.MEAN Average position of the central gap between the 12 slices of IFU m.
- QC.GEO.MASK.ANGLE Angle of the mask with respect to the slicer system, computed as median angle of all slices of all IFUs for which the measurement could be made.
- QC.GEO.GAPPOS.MEAN Average of all mean central gap positions of all IFUs for which the measure-



ment could be made.

- QC.GEO.GAPPOS.STDEV Standard deviation of all mean central gap positions of all IFUs for which the measurement could be made.
- QC.GEO.SMOOTH.NX Number of slices that were changed with respect to x position by smoothing. Gets set to -1 if smoothing is inactive.
- QC.GEO.SMOOTH.NY Number of slices that were changed with respect to y position by smoothing. Gets set to -1 if smoothing is inactive.
- QC.GEO.SMOOTH.NANGLE Number of slices that were changed with respect to angle by smoothing. Gets set to -1 if smoothing is inactive.
- QC.GEO.SMOOTH.NWIDTH Number of slices that were changed with respect to width by smoothing. Gets set to -1 if smoothing is inactive.
- QC.GEO.TABLE.NBAD Number of invalid entries in the geometry table.

#### 7.1.8 muse scibasic

Remove the instrumental signature from the data of each CCD and convert them from an image into a pixel table.

#### Description

Processing handles each raw input image separately: it trims the raw data and records the overscan statistics, subtracts the bias (taking account of the overscan, if --overscan is not "none"), optionally detects cosmic rays (note that by default cosmic ray rejection is handled in the post processing recipes while the data is reformatted into a datacube, so that the default setting is cr="none" here), converts the images from adu to count, subtracts the dark, divides by the flat-field, and (optionally) propagates the integrated flux value from the twilight-sky cube.

The reduced image is then saved (if --saveimage=true).

The input calibrations geometry table, trace table, and wavelength calibration table are used to assign 3D coordinates to each CCD-based pixel, thereby creating a pixel table for each exposure.

If --skylines contains one or more wavelengths for (bright and isolated) sky emission lines, these lines are used to correct the wavelength calibration using an offset.

The data is then cut to a useful wavelength range (if --crop=true).

If an ILLUM exposure was given as input, it is then used to correct the relative illumination between all slices of one IFU. For this, the data of each slice is multiplied by the normalized median flux of that slice in the ILLUM exposure.

As last step, the data is divided by the normalized twilight cube (if given), using the 3D coordinate of each pixel in the pixel table to interpolate the twilight correction onto the data.

This pre-reduced pixel table for each exposure is then saved to disk.

#### Input frames

At least one raw frame of the category OBJECT, STD, SKY or ASTROMETRY is required.

| Category | Type | min | Description                           |
|----------|------|-----|---------------------------------------|
| OBJECT   | raw  |     | Raw exposure of a science target      |
| STD      | raw  |     | Raw exposure of a standard star field |
|          | -    | -   | Continued on next page                |



| – continued from previous page |       |     |                                                  |  |
|--------------------------------|-------|-----|--------------------------------------------------|--|
| Category                       | Type  | min | Description                                      |  |
| SKY                            | raw   |     | Raw exposure of an (almost) empty sky field      |  |
| ASTROMETRY                     | raw   |     | Raw exposure of an astrometric field             |  |
| ILLUM                          | raw   |     | Single optional raw (attached/illumination)      |  |
|                                |       |     | flat-field exposure (optional)                   |  |
| MASTER_BIAS                    | calib | 1   | Master bias                                      |  |
| MASTER_DARK                    | calib |     | Master dark (optional, usually not used)         |  |
| MASTER_FLAT                    | calib | 1   | Master flat                                      |  |
| TRACE_TABLE                    | calib | 1   | Trace table                                      |  |
| WAVECAL_TABLE                  | calib | 1   | Wavelength calibration table                     |  |
| GEOMETRY_TABLE                 | calib | 1   | Relative positions of the slices in the field of |  |
|                                |       |     | view                                             |  |
| TWILIGHT_CUBE                  | calib |     | Smoothed cube of twilight sky (optional, more    |  |
|                                |       |     | than one frame allowed)                          |  |
| BADPIX_TABLE                   | calib |     | Known bad pixels (optional, more than one        |  |
|                                |       |     | frame allowed)                                   |  |

| Parameter  | Type   | Values         | Description                                         |
|------------|--------|----------------|-----------------------------------------------------|
|            |        | default, other |                                                     |
| nifu       | int    | 0              | IFU to handle. If set to 0, all IFUs are processed  |
|            |        |                | serially. If set to -1, all IFUs are processed in   |
|            |        |                | parallel.                                           |
| overscan   | string | vpoly          | If this is "none", stop when detecting discrepant   |
|            |        |                | overscan levels (see ovscsigma), for "offset" it    |
|            |        |                | assumes that the mean overscan level represents     |
|            |        |                | the real offset in the bias levels of the exposures |
|            |        |                | involved, and adjusts the data accordingly; for     |
|            |        |                | "vpoly", a polynomial is fit to the vertical over-  |
|            |        |                | scan and subtracted from the whole quadrant.        |
| ovscreject | string | dcr            | This influences how values are rejected when        |
|            |        |                | computing overscan statistics. Either no rejec-     |
|            |        |                | tion at all ("none"), rejection using the DCR       |
|            |        |                | algorithm ("dcr"), or rejection using an itera-     |
|            |        |                | tive constant fit ("fit").                          |
| ovscsigma  | double | 30.            | If the deviation of mean overscan levels between    |
|            |        |                | a raw input image and the reference image is        |
|            |        |                | higher than  ovscsigma x stdev , stop the pro-      |
|            |        |                | cessing. If overscan="vpoly", this is used as       |
|            |        |                | sigma rejection level for the iterative polynomial  |
|            |        |                | fit (the level comparison is then done afterwards   |
|            |        |                | with  100 x stdev  to guard against incompatible    |
|            |        |                | settings). Has no effect for overscan="offset".     |
| ovscignore | int    | 3              | The number of pixels of the overscan adjacent       |
|            |        |                | to the data section of the CCD that are ignored     |
|            |        |                | when computing statistics or fits.                  |
|            |        |                | Continued on next page                              |


| – continued from previous page |         |                         |                                                   |  |
|--------------------------------|---------|-------------------------|---------------------------------------------------|--|
| Parameter                      | Туре    | Values                  | Description                                       |  |
|                                |         | default, other          |                                                   |  |
| crop                           | boolean | true                    | Automatically crop the output pixel tables in     |  |
|                                |         |                         | wavelength depending on the expected useful       |  |
|                                |         |                         | wavelength range of the active instrument mode    |  |
|                                |         |                         | (4750-9350 Angstrom for nominal mode and          |  |
|                                |         |                         | NFM, 4700-9350 Angstrom for nominal AO            |  |
|                                |         |                         | mode, and 4600-9350 Angstrom for the ex-          |  |
|                                |         | _                       | tended modes).                                    |  |
| cr                             | string  | <b>none</b> , none, dcr | Type of cosmic ray cleaning to use (for quick-    |  |
| ,                              |         |                         | look data processing).                            |  |
| xbox                           | int     | 15                      | Search box size in x. Only used if cr=dcr.        |  |
| ybox                           | int     | 40                      | Search box size in y. Only used if cr=dcr.        |  |
| passes                         | int     | 2                       | Maximum number of cleaning passes. Only           |  |
|                                |         | <b>F</b> 0              | used if cr=dcr.                                   |  |
| thres                          | double  | 5.8                     | Threshold for detection gap in factors of stan-   |  |
|                                | 1 1     |                         | dard deviation. Only used if $cr=dcr$ .           |  |
| saveimage                      | boolean | true                    | Save the pre-processed UCD-based image of         |  |
|                                |         |                         | each input exposure before it is transformed into |  |
| alalinoa                       | atring  | 5577 330 6300 30        | a pixel table.                                    |  |
| skynnes                        | string  | 5577.559,0500.50        | Angstrom) to use as reference for wavelength      |  |
|                                |         |                         | offset correction using a Caussian fit. It can    |  |
|                                |         |                         | contain multiple (isolated) lines as comma-       |  |
|                                |         |                         | separated list individual shifts are then com-    |  |
|                                |         |                         | bined into one weighted average offset. Set to    |  |
|                                |         |                         | "none" to deactivate                              |  |
| skyhalfwidth                   | double  | 5.                      | Half-width of the extraction box (in Angstrom)    |  |
|                                | acasic  |                         | around each sky emission line.                    |  |
| skybinsize                     | double  | 0.1                     | Size of the bins (in Angstrom per pixel) for the  |  |
|                                |         |                         | intermediate spectrum to do the Gaussian fit to   |  |
|                                |         |                         | each sky emission line.                           |  |
| skyreject                      | string  | $15.,\!15.,\!1$         | Sigma clipping parameters for the intermediate    |  |
|                                |         |                         | spectrum to do the Gaussian fit to each sky       |  |
|                                |         |                         | emission line. Up to three comma-separated        |  |
|                                |         |                         | numbers can be given, which are interpreted       |  |
|                                |         |                         | as high sigma-clipping limit (float), low limit   |  |
|                                |         |                         | (float), and number of iterations (integer), re-  |  |
|                                |         |                         | spectively.                                       |  |
| resample                       | boolean | false                   | Resample the input science data into 2D spec-     |  |
|                                |         |                         | tral images using all supplied calibrations for a |  |
|                                |         |                         | visual check. Note that the image produced will   |  |
|                                |         |                         | show small wiggles even when the input calibra-   |  |
|                                |         |                         | tions are good and were applied successfully!     |  |
| dlambda                        | double  | 1.25                    | Wavelength step (in Angstrom per pixel) to use    |  |
|                                |         |                         | for resampling.                                   |  |
| merge                          | boolean | false                   | Merge output products from different IFUs into    |  |
|                                |         |                         | a common file.                                    |  |



### Product frames

The following product frames are created by the recipe:

| Default file name    | Description                                      |
|----------------------|--------------------------------------------------|
| OBJECT_RED           | Pre-processed CCD-based images for OBJECT input  |
|                      | (ifsaveimage=true)                               |
| OBJECT_RESAMPLED     | Resampled 2D image for OBJECT input (if          |
|                      | resample=true)                                   |
| PIXTABLE_OBJECT      | Output pixel table for OBJECT input              |
| STD_RED              | Pre-processed CCD-based images for STD input (if |
|                      | saveimage=true)                                  |
| STD_RESAMPLED        | Resampled 2D image for STD input (if             |
|                      | resample=true)                                   |
| PIXTABLE_STD         | Output pixel table for STD input                 |
| SKY_RED              | Pre-processed CCD-based images for SKY input (if |
|                      | saveimage=true)                                  |
| SKY_RESAMPLED        | Resampled 2D image for SKY input (if             |
|                      | resample=true)                                   |
| PIXTABLE_SKY         | Output pixel table for SKY input                 |
| ASTROMETRY_RED       | Pre-processed CCD-based images for ASTROMETRY    |
|                      | input (ifsaveimage=true)                         |
| ASTROMETRY_RESAMPLED | Resampled 2D image for ASTROMETRY input (if      |
|                      | resample=true)                                   |
| PIXTABLE_ASTROMETRY  | Output pixel table for ASTROMETRY input          |

### Quality control parameters

The following quality control parameters are available for the **muse** scibasic products:

QC.SCIBASIC.NSATURATED Number of saturated pixels in output data QC.SCIBASIC.LAMBDA.SHIFT Shift in wavelength applied to the data using sky emission line(s)

## 7.2 Post-processing recipes

### 7.2.1 muse standard

Create a flux response curve from a standard star exposure.

### Description

Merge pixel tables from all IFUs and correct for differential atmospheric refraction, when necessary.

To derive the flux response curve, integrate the flux of all objects detected within the field of view using the given profile. Select one object as the standard star (either the brightest or the one nearest one, depending on --select) and compare its measured fluxes to tabulated fluxes to derive the sensitivity over wavelength. Postprocess this sensitivity curve to mark wavelength ranges affected by telluric absorption. Interpolate over the telluric regions and derive a telluric correction spectrum for them. The final response curve is then linearly extrapolated to the largest possible MUSE wavelength range and smoothed (with



the method given by --smooth). The derivation of the telluric correction spectrum assumes that the star has a smooth spectrum within the telluric regions.

If there are more than one exposure given in the input data, the derivation of the flux response and telluric corrections are done separately for each exposure. For each exposure, an image containing the extracted stellar spectra and the datacube used for flux integration are saved, together with collapsed images for each given filter.

In MUSE's WFM data (both AO and non-AO), the Moffat profile is a good approximation of the actual PSF. Using the smoothed profile ("smoffat") helps to increase the S/N and in most cases removes systematics. In NFM, however, the profile is a combination of a wide PSF plus the central AO-corrected peak, which cannot be fit well by an analytical profile. In this case the circular aperture is the best way to extract the flux. Using --profile="auto" (the default) selects these options to give the best flux extraction for most cases.

### Input frames

| Category         | Type  | min | Description                                     |
|------------------|-------|-----|-------------------------------------------------|
| PIXTABLE_STD     | raw   | 1   | Pixel table of a standard star field            |
| EXTINCT_TABLE    | calib | 1   | Atmospheric extinction table                    |
| STD_FLUX_TABLE   | calib | 1   | Flux reference table for standard stars (more   |
|                  |       |     | than one frame allowed)                         |
| TELLURIC_REGIONS | calib |     | Definition of telluric regions (optional)       |
| FILTER LIST      | calib |     | File to be used to create field-of-view images. |
|                  |       |     | (optional)                                      |

### **Recipe parameters**

| Parameter | Type   | Values           | Description                                         |
|-----------|--------|------------------|-----------------------------------------------------|
|           |        | default, other   |                                                     |
| profile   | string | auto, gaussian,  | Type of flux integration to use. "gaus-             |
|           |        | moffat, smoffat, | sian", "moffat", and "smoffat" use 2D pro-          |
|           |        | circle, square,  | file fitting, "circle" and "square" are non-        |
|           |        | auto             | optimal aperture flux integrators. "smoffat"        |
|           |        |                  | uses smoothing of the Moffat parameters from        |
|           |        |                  | an initial fit, to derive physically meaningful     |
|           |        |                  | wavelength-dependent behavior. "auto" selects       |
|           |        |                  | the smoothed Moffat profile for WFM data and        |
|           |        |                  | circular flux integration for NFM.                  |
| select    | string | distance, flux,  | How to select the star for flux integration, "flux" |
|           |        | distance         | uses the brightest star in the field, "distance"    |
|           |        |                  | uses the detection nearest to the approximate       |
|           |        |                  | coordinates of the reference source.                |
|           |        |                  | Continued on next page                              |



| – continued from previous page |        |                |                                                   |  |  |  |
|--------------------------------|--------|----------------|---------------------------------------------------|--|--|--|
| Parameter                      | Type   | Values         | Description                                       |  |  |  |
|                                |        | default, other |                                                   |  |  |  |
| smooth                         | string | ppoly, none,   | How to smooth the response curve before writ-     |  |  |  |
|                                |        | median, ppoly  | ing it to disk. "none" does not do any            |  |  |  |
|                                |        |                | kind of smoothing (such a response curve is       |  |  |  |
|                                |        |                | only useful, if smoothed externally; "median"     |  |  |  |
|                                |        |                | does a median-filter of 15 Angstrom half-width;   |  |  |  |
|                                |        |                | "ppoly" fits piecewise cubic polynomials (each    |  |  |  |
|                                |        |                | one across 2x150 Angstrom width) postpro-         |  |  |  |
|                                |        |                | cessed by a sliding average filter of 15 Angstrom |  |  |  |
|                                |        |                | half-width.                                       |  |  |  |
| lambdamin                      | double | 4000.          | Cut off the data below this wavelength after      |  |  |  |
|                                |        |                | loading the pixel table(s).                       |  |  |  |
| lambdamax                      | double | 10000.         | Cut off the data above this wavelength after      |  |  |  |
|                                |        |                | loading the pixel table(s).                       |  |  |  |
| lambdaref                      | double | 7000.          | Reference wavelength used for correction of dif-  |  |  |  |
|                                |        |                | ferential atmospheric refraction. The R-band      |  |  |  |
|                                |        |                | (peak wavelength 7000 Angstrom) that is usu-      |  |  |  |
|                                |        |                | ally used for guiding, is close to the central    |  |  |  |
|                                |        |                | wavelength of MUSE, so a value of 7000.0          |  |  |  |
|                                |        |                | Angstrom should be used if nothing else is        |  |  |  |
|                                |        |                | known. A value less than zero switches DAR        |  |  |  |
|                                |        |                | correction off.                                   |  |  |  |
| darcheck                       | string | none, none,    | Carry out a check of the theoretical DAR cor-     |  |  |  |
|                                |        | check, correct | rection using source centroiding. If "correct" it |  |  |  |
|                                |        |                | will also apply an empirical correction.          |  |  |  |
| filter                         | string | white          | The filter name(s) to be used for the output      |  |  |  |
|                                |        |                | field-of-view image. Each name has to corre-      |  |  |  |
|                                |        |                | spond to an EXTNAME in an extension of the        |  |  |  |
|                                |        |                | FILTER_LIST file. If an unsupported filter        |  |  |  |
|                                |        |                | name is given, creation of the respective image   |  |  |  |
|                                |        |                | is omitted. If multiple filter names are given,   |  |  |  |
|                                |        |                | they have to be comma separated. If the zero-     |  |  |  |
|                                |        |                | point QC parameters are wanted, make sure to      |  |  |  |
|                                |        |                | add "Johnson_V,Cousins_R,Cousins_I".              |  |  |  |

### Product frames

The following product frames are created by the recipe:

| Default file name | Description                                          |
|-------------------|------------------------------------------------------|
| DATACUBE_STD      | Reduced standard star field exposure                 |
| STD_FLUXES        | The integrated flux per wavelength of all detected   |
|                   | sources                                              |
| STD_RESPONSE      | Response curve as derived from standard star(s)      |
| STD_TELLURIC      | Telluric absorption as derived from standard star(s) |



### Quality control parameters

The following quality control parameters are available for the **muse standard** products:

- QC.STANDARD.NDET Number of detected sources in output cube.
- QC.STANDARD.LAMBDA Wavelength of plane in combined cube that was used for object detection.
- QC.STANDARD.POSk.X Position of source k in x-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.STANDARD.POSk.Y Position of source k in y-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.STANDARD.FWHMk.X FWHM of source k in x-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.STANDARD.FWHMk.Y FWHM of source k in y-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.STANDARD.FWHM.NVALID Number of detected sources with valid FWHM in output cube.
- QC.STANDARD.FWHM.MEDIAN Median FWHM of all sources with valid FWHM measurement (in xand y-direction) in output cube. If less than three sources with valid FWHM are detected, this value is zero.
- QC.STANDARD.FWHM.MAD Median absolute deviation of the FWHM of all sources with valid FWHM measurement (in x- and y-direction) in output cube. If less than three sources with valid FWHM are detected, this value is zero.
- QC.STANDARD.STARNAME Name of the standard star used for the throughput / zeropoint calculation.
- QC.STANDARD.THRU5000 Throughput computed at 5000 + -100 Angstrom.
- QC.STANDARD.THRU7000 Throughput computed at 7000 +/- 100 Angstrom.
- QC.STANDARD.THRU8000 Throughput computed at 8000 + -100 Angstrom.
- QC.STANDARD.THRU9000 Throughput computed at 9000 +/- 100 Angstrom.
- QC.STANDARD.ZP.V Zeropoint in Johnson V filter. zp = -2.5 log10(fobs\_V / fref\_V), where fobs\_V was integrated over the filter curve and converted to f\_lambda using the known effective VLT area. (optional) Only computed if FILTER LIST and corresponding --filter is given.
- QC.STANDARD.ZP.R Zeropoint in Cousins R filter.  $zp = -2.5 \log 10 (fobs_R / fref_R)$ , where fobs\_R was integrated over the filter curve and converted to f\_lambda using the known effective VLT area. (optional) Only computed if FILTER\_LIST and corresponding --filter is given.
- QC.STANDARD.ZP.I Zeropoint in Cousins I filter. zp = -2.5 log10(fobs\_I / fref\_I), where fobs\_I was integrated over the filter curve and converted to f\_lambda using the known effective VLT area. (optional) Only computed if FILTER LIST and corresponding --filter is given.

### 7.2.2 muse create sky

Create night sky model from selected pixels of an exposure of empty sky.

### Description

This recipe creates the continuum and the atmospheric transition line spectra of the night sky from the data in a pixel table(s) belonging to one exposure of (mostly) empty sky.

### Input frames



| Category      | Type  | min | Description                                      |
|---------------|-------|-----|--------------------------------------------------|
| PIXTABLE_SKY  | raw   | 1   | Input pixel table. If the pixel table is not al- |
|               |       |     | ready flux calibrated, the corresponding flux    |
|               |       |     | calibration frames should be given as well.      |
| EXTINCT_TABLE | calib | 1   | Atmospheric extinction table                     |
| STD_RESPONSE  | calib | 1   | Response curve as derived from standard          |
|               |       |     | star(s)                                          |
| STD_TELLURIC  | calib |     | Telluric absorption as derived from standard     |
|               |       |     | star(s) (optional)                               |
| SKY_LINES     | calib | 1   | List of OH transitions and other sky lines       |
| SKY_CONTINUUM | calib |     | Sky continuum to use (optional)                  |
| LSF_PROFILE   | calib | 1   | Slice specific LSF parameters cubes              |
| SKY_MASK      | calib |     | Sky mask to use (optional)                       |

## Recipe parameters

| Parameter | Type   | Values         | Description                                      |
|-----------|--------|----------------|--------------------------------------------------|
|           |        | default, other |                                                  |
| fraction  | double | 0.75           | Fraction of the image (without the ignored part) |
|           |        |                | to be considered as sky. If an input sky mask is |
|           |        |                | provided, the fraction is applied to the regions |
|           |        |                | within the mask. If the whole sky mask should    |
|           |        |                | be used, set this parameter to 1.                |
| ignore    | double | 0.05           | Fraction of the image to be ignored. If an input |
|           |        |                | sky mask is provided, the fraction is applied to |
|           |        |                | the regions within the mask. If the whole sky    |
|           |        |                | mask should be used, set this parameter to 0.    |
| lambdamin | double | 4000.          | Cut off the data below this wavelength after     |
|           |        |                | loading the pixel table(s).                      |
| lambdamax | double | 10000.         | Cut off the data above this wavelength after     |
|           |        |                | loading the pixel table(s).                      |
| lambdaref | double | 7000.          | Reference wavelength used for correction of dif- |
|           |        |                | ferential atmospheric refraction. The R-band     |
|           |        |                | (peak wavelength 7000 Angstrom) that is usu-     |
|           |        |                | ally used for guiding, is close to the central   |
|           |        |                | wavelength of MUSE, so a value of 7000.0         |
|           |        |                | Angstrom should be used if nothing else is       |
|           |        |                | known. A value less than zero switches DAR       |
|           |        |                | correction off.                                  |

### Product frames

The following product frames are created by the recipe:

| Default file name | Description                                  |
|-------------------|----------------------------------------------|
| SKY_MASK          | Created sky mask                             |
| SKY_IMAGE         | Whitelight image used to create the sky mask |
| SKY_SPECTRUM      | Sky spectrum within the sky mask             |
|                   | Continued on next page                       |



| – continued from previous page |                                   |
|--------------------------------|-----------------------------------|
| Default file name              | Description                       |
| SKY_LINES                      | Estimated sky line flux table     |
| SKY_CONTINUUM                  | Estimated continuum flux spectrum |

### Quality control parameters

The following quality control parameters are available for the **muse create sky** products:

QC.SKY.THRESHOLDThreshold in the white light considered as sky, used to create this maskQC.SKY.LINE1.NAMEName of the strongest line in group kQC.SKY.LINE1.AWAVWavelength (air) of the strongest line of group lQC.SKY.LINE1.FLUXFlux of the strongest line of group lQC.SKY.CONT.FLUXTotal flux of the continuumQC.SKY.CONT.MAXDEVMaximum (absolute value) of the derivative of the continuum spectrum

### 7.2.3 muse astrometry

Compute an astrometric solution.

### Description

Merge pixel tables from all IFUs, apply correction for differential atmospheric refraction (when necessary), optionally apply flux calibration and telluric correction (if the necessary input data was given), and resample the data from all exposures into a datacube. Use the cube to detect objects which are then matched to their reference positions from which a two-dimensional WCS solution is computed.

There are two pattern matching algorithm implemented, which can be selected by chosing a positive or zero value of faccuracy.

In the first method (with a positive value of faccuracy), start using the search radius, and iteratively decrease it, until no duplicate detections are identified any more. Similarly, iterate the data accuracy (decrease it downwards from the mean positioning error) until matches are found. Remove the remaining unidentified objects.

The second method (when faccuracy is set to zero), iterates through all quadruples in both the detected objects and the catalogue, calculates the transformation and checks whether more than 80% of the detections match a catalog entry within the radius.

The main output is the ASTROMETRY\_WCS file which is a bare FITS header containing the world coordinate solution. The secondary product is DATACUBE\_ASTROMETRY, it is not needed for further processing but can be used for verification and debugging. It contains the reconstructed cube and two images created from it in further FITS extensions: a white-light image and the special image created from the central planes of the cube used to detect and centroid the stars (as well as its variance).

### Input frames

| Category            | Type | min | Description                         |
|---------------------|------|-----|-------------------------------------|
| PIXTABLE_ASTROMETRY | raw  | 1   | Pixel table of an astrometric field |
|                     |      |     | Continued on next page              |



| – continued from previous page |       |     |                                              |  |
|--------------------------------|-------|-----|----------------------------------------------|--|
| Category                       | Type  | min | Description                                  |  |
| ASTROMETRY_REFERENCE           | calib | 1   | Reference table of known objects for astrom- |  |
|                                |       |     | etry                                         |  |
| EXTINCT_TABLE                  | calib |     | Atmospheric extinction table (optional)      |  |
| STD_RESPONSE                   | calib |     | Response curve as derived from standard      |  |
|                                |       |     | star(s) (optional)                           |  |
| STD_TELLURIC                   | calib |     | Telluric absorption as derived from standard |  |
|                                |       |     | star(s) (optional)                           |  |

## Recipe parameters

| Parameter | Type   | Values              | Description                                         |
|-----------|--------|---------------------|-----------------------------------------------------|
|           |        | default, other      |                                                     |
| centroid  | string | moffat, gaussian,   | Centroiding method to use for objects in the        |
|           |        | moffat, box         | field of view. "gaussian" and "moffat" use 2D       |
|           |        |                     | fits to derive the centroid, "box" is a simple cen- |
|           |        |                     | troid in a square box.                              |
| detsigma  | double | 1.5                 | Source detection sigma level to use. If this is     |
|           |        |                     | negative, values between its absolute and 1.0 are   |
|           |        |                     | tested with a stepsize of 0.1, to find an optimal   |
|           |        |                     | solution.                                           |
| radius    | double | 3.                  | Initial radius in pixels for pattern matching       |
|           |        |                     | identification in the astrometric field.            |
| faccuracy | double | 0.                  | Factor of initial accuracy relative to mean posi-   |
| U         |        |                     | tional accuracy of the measured positions to use    |
|           |        |                     | for pattern matching. If this is set to zero, use   |
|           |        |                     | the quadruples based method.                        |
| niter     | int    | 2                   | Number of iterations of the astrometric fit.        |
| rejsigma  | double | 3.                  | Rejection sigma level of the astrometric fit.       |
| rotcenter | string | -0.01,-1.20         | Center of rotation of the instrument, given as      |
|           |        |                     | two comma-separated floating point values in        |
|           |        |                     | pixels.                                             |
| lambdamin | double | 4000.               | Cut off the data below this wavelength after        |
|           |        |                     | loading the pixel table(s).                         |
| lambdamax | double | 10000.              | Cut off the data above this wavelength after        |
|           |        |                     | loading the pixel table(s).                         |
| lambdaref | double | 7000.               | Reference wavelength used for correction of dif-    |
|           |        |                     | ferential atmospheric refraction. The R-band        |
|           |        |                     | (peak wavelength 7000 Angstrom) that is usu-        |
|           |        |                     | ally used for guiding, is close to the central      |
|           |        |                     | wavelength of MUSE, so a value of 7000.0            |
|           |        |                     | Angstrom should be used if nothing else is          |
|           |        |                     | known. A value less than zero switches DAR          |
|           |        |                     | correction off.                                     |
| darcheck  | string | <b>none</b> , none, | Carry out a check of the theoretical DAR cor-       |
|           |        | check, correct      | rection using source centroiding. If "correct" it   |
|           |        |                     | will also apply an empirical correction.            |



### Product frames

The following product frames are created by the recipe:

| Default file name   | Description                       |
|---------------------|-----------------------------------|
| DATACUBE_ASTROMETRY | Reduced astrometry field exposure |
| ASTROMETRY_WCS      | Astrometric solution              |

### Quality control parameters

The following quality control parameters are available for the **muse astrometry** products:

- QC.ASTRO.NDET Number of detected sources in output cube.
- QC.ASTRO.LAMBDA Wavelength of plane in combined cube that was used for object detection.
- QC.ASTRO.POSk.X Position of source k in x-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.ASTRO.POSk.Y Position of source k in y-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.ASTRO.FWHMk.X FWHM of source k in x-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.ASTRO.FWHMk.Y FWHM of source k in y-direction in output cube. If the FWHM measurement fails, this value will be -1.
- QC.ASTRO.FWHM.NVALID Number of detected sources with valid FWHM in output cube.
- QC.ASTRO.FWHM.MEDIAN Median FWHM of all sources with valid FWHM measurement (in x- and y-direction) in output cube. If less than three sources with valid FWHM are detected, this value is zero.
- QC.ASTRO.FWHM.MAD Median absolute deviation of the FWHM of all sources with valid FWHM measurement (in x- and y-direction) in output cube. If less than three sources with valid FWHM are detected, this value is zero.
- QC.ASTRO.NSTARS Number of stars identified for the astrometric solution
- QC.ASTRO.SCALE.X Computed scale in x-direction
- QC.ASTRO.SCALE.Y Computed scale in y-direction
- QC.ASTRO.ANGLE.X Computed angle in x-direction
- QC.ASTRO.ANGLE.Y Computed angle in y-direction
- QC.ASTRO.MEDRES.X Median residuals of astrometric fit in x-direction
- QC.ASTRO.MEDRES.Y Median residuals of astrometric fit in y-direction

### 7.2.4 muse scipost

Prepare reduced and combined science products.

### Description

Sort input pixel tables into lists of files per exposure, merge pixel tables from all IFUs of each exposure.

Correct each exposure for differential atmospheric refraction (unless --lambdaref is far outside the MUSE wavelength range, or NFM is used which has a built-in corrector). Then the flux calibration is carried out, if a response curve was given in the input; it includes a correction of telluric absorption, if a telluric absorption correction file was given. If observations were done with AO and a RAMAN\_LINES file was given, a procedure is run to clean the Raman scattering emission lines from the data. Next,



the slice autocalibration is computed and the flux correction factors are applied to the pixel table (if --autocalib="deepfield"). If user-provided autocalibration is requested (--autocalib="user"), then the autocalibration is not computed on the input exposure but the autocalibration factors are read from the AUTOCAL\_FACTORS table and applied directly to the data. Then the sky subtraction is carried out (unless --skymethod="none"), either directly subtracting an input sky continuum and an input sky emission lines (for --skymethod="subtract-model"), or (--skymethod="model") create a sky spectrum from the darkest fraction (--skymodel\_fraction, after ignoring the lowest --skymodel\_ignore as artifacts) of the field of view, then fitting and subtracting sky emission lines using an initial estimate of the input sky lines; then the continuum (residuals after subtracting the sky lines from the sky spectrum) is subtracted as well. If --save contains "skymodel", all sky-related products are saved for each exposure. Afterwards the data is corrected for the radial velocity of the observer (--rvcorr), before the input (or a default) astrometric solution is applied. Now each individual exposure is fully reduced; the pixel tables at this stage can be saved by setting "individual" in --save.

If multiple exposures were given, they are then combined. If --save contains "combined", this final merged pixel table is saved.

Finally (if --save contains "cube"), the data is resampled into a datacube, using all parameters given to the recipe. The extent and orientation of the cube is normally computed from the data itself, but this can be overridden by passing a file with the output world coordinate system (OUTPUT\_WCS), for example a MUSE cube. This can also be used to sample the wavelength axis logarithmically (in that file set "CTYPE3='AWAV-LOG'"). As a last step, the computed cube is integrated over all filter functions given (--filter) that are also present in the input filter list table.

| Category        | Type  | min | Description                                     |
|-----------------|-------|-----|-------------------------------------------------|
| PIXTABLE_OBJECT | raw   | 1   | Pixel table of a science object                 |
| EXTINCT_TABLE   | calib | 1   | Atmospheric extinction table                    |
| STD_RESPONSE    | calib | 1   | Response curve as derived from standard         |
|                 |       |     | $\operatorname{star}(s)$                        |
| STD_TELLURIC    | calib |     | Telluric absorption correction as derived from  |
|                 |       |     | standard star(s) (optional)                     |
| ASTROMETRY_WCS  | calib |     | Astrometric solution derived from astrometric   |
|                 |       |     | science frame (optional)                        |
| OFFSET_LIST     | calib |     | List of coordinate offsets (and optional        |
|                 |       |     | flux scale factors); can influence how the      |
|                 |       |     | SKY_MASK is interpreted (optional)              |
| FILTER_LIST     | calib |     | File to be used to create field-of-view images. |
|                 |       |     | (optional)                                      |
| OUTPUT_WCS      | calib |     | WCS to override output cube location $/$ di-    |
|                 |       |     | mensions (see data format chapter for details)  |
|                 |       |     | (optional)                                      |
| AUTOCAL_FACTORS | calib |     | Table with multiplicative factors applied to    |
|                 |       |     | all slices (used only ifautocalib=user) (op-    |
|                 |       |     | tional)                                         |
| RAMAN_LINES     | calib |     | List of Raman line transitions of O2 and N2     |
|                 |       |     | (optional)                                      |
| SKY_LINES       | calib |     | List of OH transitions and other sky lines (op- |
|                 |       |     | tional)                                         |
|                 |       |     | Continued on next page                          |

### Input frames



| – continued from previous page |       |     |                                                |
|--------------------------------|-------|-----|------------------------------------------------|
| Category                       | Type  | min | Description                                    |
| SKY_CONTINUUM                  | calib |     | Sky continuum to use (optional)                |
| LSF_PROFILE                    | calib |     | Slice specific LSF parameters. (optional, more |
|                                |       |     | than one frame allowed)                        |
| SKY_MASK                       | calib |     | Sky mask to use; if it contains a WCS, it is   |
|                                |       |     | aligned to the data before masking (optional)  |

## **Recipe parameters**

| Parameter | Type   | Values                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|--------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |        | default, other                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| save      | string | cube,skymodel                                                         | Select output product(s) to save. Can contain<br>one or more of "cube", "autocal", "skymodel",<br>"individual", "positioned", "combined", and<br>"stacked". If several options are given, they<br>have to be comma-separated. ("cube": output<br>cube and associated images, if this is not given,<br>no final resampling is done at all "autocal":<br>up to two additional output products related<br>to the slice autocalibration "raman": up to<br>four additional output products about the Ra-<br>man light distribution for AO observations<br>"skymodel": up to four additional output prod-<br>ucts about the effectively used sky that was<br>subtracted with the "model" method "indi-<br>vidual": fully reduced pixel table for each indi-<br>vidual exposure "positioned": fully reduced<br>and positioned pixel table for each individual<br>exposure, the difference to "individual" is that<br>here, the output pixel tables have coordinates<br>in RA and DEC, and the optional offsets were<br>applied; this is only useful, if both the relative<br>exposure weighting and the final resampling are<br>to be done externally "combined": fully re-<br>duced and combined pixel table for the full set of<br>exposures, the difference to "positioned" is that<br>all pixel tables are combined into one, with an<br>added weight column; this is useful, if only the<br>final resampling step is to be done separately<br>"stacked": an additional output file in form of<br>a 2D column-stacked image, i.e. x direction is |
| resample  | string | drizzle, nearest,<br>linear, quadratic,<br>renka, drizzle,<br>lanczos | The resampling technique to use for the final output cube.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |        |                                                                       | Continued on next page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| – continued from previous page |        |                |                                                         |
|--------------------------------|--------|----------------|---------------------------------------------------------|
| Parameter                      | Туре   | Values         | Description                                             |
|                                |        | default, other |                                                         |
| dx                             | double | 0.0            | Horizontal step size for resampling (in arcsec or       |
|                                |        |                | pixel). The following defaults are taken when           |
|                                |        |                | this value is set to $0.0$ : $0.2$ " for WFM, $0.025$ " |
|                                |        |                | for NFM, 1.0 if data is in pixel units.                 |
| dy                             | double | 0.0            | Vertical step size for resampling (in arcsec or         |
|                                |        |                | pixel). The following defaults are taken when           |
|                                |        |                | this value is set to $0.0: 0.2$ " for WFM, $0.025$ "    |
|                                |        |                | for NFM, 1.0 if data is in pixel units.                 |
| dlambda                        | double | 0.0            | Wavelength step size (in Angstrom). Natural             |
| antimo                         | atring | modian inst    | Type of statistics used for detection of eeg            |
| crtype                         | sung   | mean median    | mic rays during final resampling "iraf" uses            |
|                                |        |                | the variance information "mean" uses standard           |
|                                |        |                | (mean/stdey) statistics. "median" uses median           |
|                                |        |                | and the median median of the absolute median            |
|                                |        |                | deviation.                                              |
| crsigma                        | double | 15.            | Sigma rejection factor to use for cosmic ray re-        |
|                                |        |                | jection during final resampling. A zero or neg-         |
|                                |        |                | ative value switches cosmic ray rejection off.          |
| rc                             | double | 1.25           | Critical radius for the "renka" resampling              |
|                                |        |                | method.                                                 |
| pixfrac                        | string | 0.8,0.8        | Pixel down-scaling factor for the "drizzle" re-         |
|                                |        |                | sampling method. Up to three, comma-                    |
|                                |        |                | separated, noating-point values can be given. If        |
|                                |        |                | sions two values are interpreted as spatial and         |
|                                |        |                | spectral direction respectively while three are         |
|                                |        |                | taken as horizontal, vertical, and spectral.            |
| ld                             | int    | 1              | Number of adjacent pixels to take into account          |
|                                |        |                | during resampling in all three directions (loop         |
|                                |        |                | distance); this affects all resampling methods          |
|                                |        |                | except "nearest".                                       |
| format                         | string | Cube, Cube,    | Type of output file format, "Cube" is a standard        |
|                                |        | Euro3D, xCube, | FITS cube with NAXIS=3 and multiple exten-              |
|                                |        | xEuro3D,       | sions (for data and variance). The extended             |
|                                |        | sapCube        | "X" formats include the reconstructed image(s)          |
|                                |        |                | III F115 Image extensions within the same file.         |
|                                |        |                | ate FITS keywords for the ESO Science Data              |
|                                |        |                | Products.                                               |
|                                |        |                | Continued on next page                                  |



| - continued from | previous pag |                          |                                                       |
|------------------|--------------|--------------------------|-------------------------------------------------------|
| Parameter        | Type         | Values<br>default, other | Description                                           |
| weight           | string       | exptime,                 | Type of weighting scheme to use when combin-          |
|                  |              | exptime, fwhm,           | ing multiple exposures. "exptime" just uses the       |
|                  |              | none                     | exposure time to weight the exposures, "fwhm"         |
|                  |              |                          | uses the best available seeing information from       |
|                  |              |                          | the headers as well, "none" preserves an existing     |
|                  |              |                          | weight column in the input pixel tables without       |
| filter           | string       | white                    | The filter name(s) to be used for the output.         |
| moor             | Sumg         | winte                    | field-of-view image. Each name has to corre-          |
|                  |              |                          | spond to an EXTNAME in an extension of the            |
|                  |              |                          | FILTER_LIST file. If an unsupported filter            |
|                  |              |                          | name is given, creation of the respective image       |
|                  |              |                          | is omitted. If multiple filter names are given,       |
|                  |              |                          | they have to be comma separated.                      |
| autocalib        | string       | none, none,              | The type of autocalibration to use. "none"            |
|                  |              | deepfield, user          | switches it off, "deepfield" uses the revised         |
|                  |              |                          | MPDAF method that can be used for the re-             |
|                  |              |                          | searches for a user-provided table with autocal-      |
|                  |              |                          | ibration factors.                                     |
| skymethod        | string       | model, none,             | The method used to subtract the sky back-             |
| U                |              | subtract-model,          | ground (spectrum). Option "model" should              |
|                  |              | model, simple            | work in all kinds of science fields: it uses a global |
|                  |              |                          | sky spectrum model with a local LSF. "model"          |
|                  |              |                          | uses fluxes indicated in the SKY_LINES file           |
|                  |              |                          | as starting estimates, but re-fits them on the        |
|                  |              |                          | global sky spectrum created from the science          |
|                  |              |                          | it is directly subtracted otherwise it is cre-        |
|                  |              |                          | ated from the sky region of the science expo-         |
|                  |              |                          | sure. Option "subtract-model" uses the input          |
|                  |              |                          | SKY_LINES and SKY_CONTINUUM, sub-                     |
|                  |              |                          | tracting them directly without re-fitting the         |
|                  |              |                          | fluxes, but still makes use of the local LSF,         |
|                  |              |                          | hence LSF_PROFILE is required. The in-                |
|                  |              |                          | puts LSF_PROFILE and SKY_LINES are                    |
|                  |              |                          | necessary for these two model-based methods;          |
|                  |              |                          | model" and optional for "model". SKV_MASK             |
|                  |              |                          | is optional for "model". Finally, option "sim-        |
|                  |              |                          | ple" creates a sky spectrum from the science          |
|                  |              |                          | data, and directly subtracts it, without taking       |
|                  |              |                          | the LSF into account (LSF_PROFILE and in-             |
|                  |              |                          | put SKY files are ignored). It works on data          |
|                  |              |                          | that was not flux calibrated.                         |
|                  |              |                          | Continued on next page                                |

Continued on next page



| – continued from previous page |         |                    |                                                    |
|--------------------------------|---------|--------------------|----------------------------------------------------|
| Parameter                      | Type    | Values             | Description                                        |
|                                |         | default, other     |                                                    |
| lambdamin                      | double  | 4000.              | Cut off the data below this wavelength after       |
|                                |         |                    | loading the pixel table(s).                        |
| lambdamax                      | double  | 10000.             | Cut off the data above this wavelength after       |
|                                |         |                    | loading the pixel table(s).                        |
| lambdaref                      | double  | 7000.              | Reference wavelength used for correction of dif-   |
|                                |         |                    | ferential atmospheric refraction. The R-band       |
|                                |         |                    | (peak wavelength 7000 Angstrom) that is usu-       |
|                                |         |                    | ally used for guiding, is close to the central     |
|                                |         |                    | wavelength of MUSE, so a value of 7000.0           |
|                                |         |                    | Angstrom should be used if nothing else is         |
|                                |         |                    | known. A value less than zero switches DAR         |
|                                |         |                    | correction off.                                    |
| darcheck                       | string  | none, none,        | Carry out a check of the theoretical DAR cor-      |
|                                |         | check, correct     | rection using source centroiding. If "correct" it  |
|                                |         |                    | will also apply an empirical correction.           |
| skymodel_fraction              | double  | 0.10               | Fraction of the image (without the ignored part)   |
|                                |         |                    | to be considered as sky. If an input sky mask is   |
|                                |         |                    | provided, the fraction is applied to the regions   |
|                                |         |                    | within the mask. If the whole sky mask should      |
|                                |         |                    | be used, set this parameter to 1.                  |
| skymodel_ignore                | double  | 0.05               | Fraction of the image to be ignored. If an input   |
|                                |         |                    | sky mask is provided, the fraction is applied to   |
|                                |         |                    | the regions within the mask. If the whole sky      |
|                                |         |                    | mask should be used, set this parameter to 0.      |
| rvcorr                         | string  | bary, bary, helio, | Correct the radial velocity of the telescope with  |
|                                |         | geo, none          | reference to either the barycenter of the Solar    |
|                                |         |                    | System (bary), the center of the Sun (helio), or   |
|                                |         |                    | to the center of the Earth (geo).                  |
| astrometry                     | boolean | true               | If false, skip any astrometric calibration, even   |
|                                |         |                    | if one was passed in the input set of files. This  |
|                                |         |                    | causes creation of an output cube with a linear    |
|                                |         |                    | WCS and may result in errors. If you want to       |
|                                |         |                    | use a sensible default, leave this true but do not |
|                                |         |                    | pass an ASTROMETRY_WCS.                            |

### Product frames

The following product frames are created by the recipe:

| Default file name | Description                                            |
|-------------------|--------------------------------------------------------|
| DATACUBE_FINAL    | Output datacube                                        |
| IMAGE_FOV         | Field-of-view images corresponding to the "filter" pa- |
|                   | rameter.                                               |
| OBJECT_RESAMPLED  | Stacked image (ifsave contains "stacked")              |
| PIXTABLE_REDUCED  | Fully reduced pixel tables for each exposure (ifsave   |
|                   | contains "individual")                                 |
|                   | Continued on next page                                 |



| – continued from previous page |                                                         |
|--------------------------------|---------------------------------------------------------|
| Default file name              | Description                                             |
| PIXTABLE_POSITIONED            | Fully reduced and positioned pixel table for each indi- |
|                                | vidual exposure (ifsave contains "positioned")          |
| PIXTABLE_COMBINED              | Fully reduced and combined pixel table for the full set |
|                                | of exposures (ifsave contains "combined")               |
| AUTOCAL_MASK                   | Created sky mask for autocalibration (if                |
|                                | autocalib=deepfield andsave contains "autocal" but      |
|                                | no input SKY_MASK was given)                            |
| AUTOCAL_FACTORS                | Table with factors applied during autocalibration (if   |
|                                | autocalib=deepfield andsave contains "autocal")         |
| RAMAN_IMAGES                   | Images for Raman correction diagnostics (if an in-      |
|                                | put RAMAN_LINES was given, the instrument               |
|                                | used AO andsave contains "raman"). Exten-               |
|                                | sions are: DATA: model of the Raman light distri-       |
|                                | bution in the field of view (arbitrary units), RA-      |
|                                | MAN_IMAGE_O2: reconstructed image in the O2             |
|                                | band, SKY_MASK_O2: sky mask used for the O2             |
|                                | band, RAMAN_IMAGE_N2: reconstructed image in            |
|                                | the N2 band, SKY_MASK_N2: sky mask used for             |
|                                | the N2 band, RAMAN_FIT_O2: model of Raman               |
|                                | flux distribution in the O2 band, RAMAN_FTT_N2:         |
|                                | model of Raman flux distribution in the N2 band.        |
| SKY_IMAGE                      | Reconstructed sky image which is then used to create    |
|                                | the SKY_MASK (ifskymethod=model andsave                 |
|                                | contains "skymodel")                                    |
| SKY_MASK                       | Created sky mask (ifskymethod=model andsave             |
| CLAN CODOCTOLINA               | contains "skymodel")                                    |
| SKY_SPECTRUM                   | Sky spectrum within the sky mask (if                    |
| QLY LINES                      | skymethod=model andsave contains "skymodel")            |
| SKI_LINES                      | estimated sky line flux table (ifskylinethod=model      |
| SKY CONTINUUM                  | andsave contains "skymodel")                            |
|                                | estimated continuum nux spectrum (II                    |
|                                | skymethod=model andsave contains "skymodel")            |

### Quality control parameters

The following quality control parameters are available for the **muse** scipost products:

QC.SCIPOST.NDET Number of detected sources in output cube. QC.SCIPOST.LAMBDA Wavelength of plane in combined cube that was used for object detection. QC.SCIPOST.POSk.X Position of source k in x-direction in combined frame Position of source k in y-direction in combined frame QC.SCIPOST.POSk.Y QC.SCIPOST.FWHMk.X FWHM of source k in x-direction in combined frame FWHM of source k in y-direction in combined frame QC.SCIPOST.FWHMk.Y QC.SCIPOST.FWHM.NVALID Number of detected sources with valid FWHM in output cube. Median FWHM of all sources with valid FWHM measurement (in x- and QC.SCIPOST.FWHM.MEDIAN y-direction) in output cube. If less than three sources with valid FWHM are detected, this value is zero. Median absolute deviation of the FWHM of all sources with valid FWHM QC.SCIPOST.FWHM.MAD



measurement (in x- and y-direction) in output cube. If less than three sources with valid FWHM are detected, this value is zero.

QC.SCIPOST.LOWLIMIT Low limit in the white light considered as sky, used to create this mask, everything lower are likely artifacts.

QC.SCIPOST.THRESHOLD Threshold in the white light considered as sky, used to create this mask, higher values are likely objects in the field.

```
QC.SCIPOST.RAMAN.SPATIAL.XX 2D Polynomial x<sup>2</sup> coefficient
```

QC.SCIPOST.RAMAN.SPATIAL.XY 2D Polynomial xy coefficient

```
QC.SCIPOST.RAMAN.SPATIAL.YY 2D Polynomial y<sup>2</sup> coefficient
```

- QC.SCIPOST.RAMAN.SPATIAL.X 2D Polynomial x coefficient
- QC.SCIPOST.RAMAN.SPATIAL.Y 2D Polynomial y coefficient
- QC.SCIPOST.RAMAN.FLUX.O2 Computed average Raman scattered flux in the O2 band (around 6484 Angstrom)
- QC.SCIPOST.RAMAN.FLUX.N2 Computed average Raman scattered flux in the N2 band (around 6827 Angstrom)
- QC.SCIPOST.LINEL.NAME Name of the strongest line in group l
- QC.SCIPOST.LINEL.AWAV Wavelength (air) of the strongest line of group l
- QC.SCIPOST.LINE1.FLUX Flux of the strongest line of group l
- QC.SCIPOST.CONT.FLUX Total flux of the continuum
- QC.SCIPOST.CONT.MAXDEV Maximum (absolute value) of the derivative of the continuum spectrum

### 7.2.5 muse exp\_align

Create a coordinate offset table to be used to align exposures during exposure combination.

### Description

Compute the coordinate offset for each input field-of-view image with respect to a reference. The created list of coordinate offsets can then be used in muse \_exp\_combine as the field coordinate offsets to properly align the exposures during their combination. The source positions used to compute the field offsets are obtained by detecting point sources in each of the input images, unless the source detection is overridden and an input source list is available for each input field-of-view image. In this latter case the input source positions are used to calculate the field offsets.

### Input frames

| Category    | Type  | min | Description                                     |
|-------------|-------|-----|-------------------------------------------------|
| IMAGE_FOV   | raw   | 2   | Input field-of-view images (more than 2         |
|             |       |     | frames allowed)                                 |
| SOURCE_LIST | calib |     | Input list of sources for a field-of-view image |
|             |       |     | (optional, more than one frame allowed)         |

#### **Recipe parameters**



| Parameter    | Type    | Values                | Description                                       |
|--------------|---------|-----------------------|---------------------------------------------------|
|              |         | default, other        |                                                   |
| rsearch      | string  | $30.,\!4.,\!2.,\!0.8$ | Search radius (in arcsec) for each iteration of   |
|              |         |                       | the offset computation.                           |
| nbins        | int     | 60                    | Number of bins to use for 2D histogram on the     |
|              |         |                       | first iteration of the offset computation.        |
| weight       | boolean | true                  | Use weighting.                                    |
| fwhm         | double  | 5.                    | FWHM in pixels of the convolution filter.         |
| threshold    | double  | 15.                   | Initial intensity threshold for detecting point   |
|              |         |                       | sources. If the value is negative or zero the     |
|              |         |                       | threshold is taken as sigma above median back-    |
|              |         |                       | ground MAD. If it is larger than zero the thresh- |
|              |         |                       | old is taken as absolute background level.        |
| bkgignore    | double  | 0.05                  | Fraction of the image to be ignored.              |
| bkgfraction  | double  | 0.10                  | Fraction of the image (without the ignored part)  |
|              |         |                       | to be considered as background.                   |
| step         | double  | 0.5                   | Increment/decrement of the threshold value in     |
|              |         |                       | subsequent iterations.                            |
| iterations   | int     | 100000                | Maximum number of iterations used for detect-     |
|              |         |                       | ing sources.                                      |
| srcmin       | int     | 5                     | Minimum number of sources which must be           |
|              |         |                       | found.                                            |
| srcmax       | int     | 80                    | Maximum number of sources which may be            |
|              |         |                       | found.                                            |
| roundmin     | double  | -1.                   | Lower limit of the allowed point-source round-    |
|              |         | _                     | ness.                                             |
| roundmax     | double  | 1.                    | Upper limit of the allowed point-source round-    |
| 1 .          | 1 11    | 0.0                   | ness.                                             |
| sharpmin     | double  | 0.2                   | Lower limit of the allowed point-source sharp-    |
| 1            | 1 11    | 1                     |                                                   |
| sharpmax     | double  | 1.                    | Opper limit of the allowed point-source snarp-    |
| hnindistance | double  | F                     | Minimum allowed distance of a source to the       |
| opixalstance | double  | э.                    | algoest had nivel in nivel. Detected courses      |
|              |         |                       | which are closer to a had rivel are not taken     |
|              |         |                       | into account when computing the field offsets     |
|              |         |                       | This option has no effect if the source positions |
|              |         |                       | are taken from input catalogs                     |
|              |         |                       | are taken nom mput catalogs.                      |

### Product frames

The following product frames are created by the recipe:

| Default file name | Description                                           |
|-------------------|-------------------------------------------------------|
| EXPOSURE_MAP      | Map of the total exposure time of the combined field- |
|                   | of-view (only if enabled).                            |
| PREVIEW_FOV       | Preview image of the combined field-of-view.          |
| SOURCE_LIST       | List of parameters of the detected point sources.     |
| OFFSET_LIST       | List of computed coordinate offsets.                  |



### Quality control parameters

The following quality control parameters are available for the **muse** exp align products:

```
Minimum exposure time of the combined field-of-view.
QC.EXPALIGN.EXPTIME.MIN
                            Maximum exposure time of the combined field-of-view.
QC.EXPALIGN.EXPTIME.MAX
QC.EXPALIGN.EXPTIME.AVG
                            Average exposure time of the combined field-of-view.
QC.EXPALIGN.EXPTIME.MED
                            Median exposure time of the combined field-of-view.
QC.EXPALIGN.SRC.POSITIONS
                              Origin of the source positions.
                    Number of detected sources.
QC.EXPALIGN.NDET
QC.EXPALIGN.BKG.MEDIAN
                           Median value of background pixels.
                       Median absolute deviation of the background pixels.
QC.EXPALIGN.BKG.MAD
QC.EXPALIGN.THRESHOLD
                          Detection threshold used for detecting sources.
                     Number of detected sources for input image i
QC.EXPALIGN.NDETi
QC.EXPALIGN.NMATCHi
                       Median number of matches of input image i with other images
QC.EXPALIGN.NMATCH.MIN
                           Minimum of the median number of matches for all input images
                       Number of input images that do not have any matches with other images
QC.EXPALIGN.NOMATCH
                              [arcsec] RA minimum offset.
QC.EXPALIGN.OFFSET.RA.MIN
                              [arcsec] RA maximum offset.
QC.EXPALIGN.OFFSET.RA.MAX
QC.EXPALIGN.OFFSET.RA.MEAN
                               [arcsec] RA mean offset.
QC.EXPALIGN.OFFSET.RA.STDEV
                                [arcsec] Standard deviation of RA offsets.
                               [arcsec] DEC minimum offset.
QC.EXPALIGN.OFFSET.DEC.MIN
                               [arcsec] DEC maximum offset.
QC.EXPALIGN.OFFSET.DEC.MAX
QC.EXPALIGN.OFFSET.DEC.MEAN
                                [arcsec] DEC mean offset.
                                 [arcsec] Standard deviation of DEC offsets.
QC.EXPALIGN.OFFSET.DEC.STDEV
```

### 7.2.6 muse exp combine

Combine several exposures into one datacube.

### Description

Sort reduced pixel tables, one per exposure, by exposure and combine them with applied weights into one final datacube.

### Input frames

| Category         | Type  | min | Description                                     |
|------------------|-------|-----|-------------------------------------------------|
| PIXTABLE_REDUCED | raw   | 2   | Input pixel tables (more than 2 frames al-      |
|                  |       |     | lowed)                                          |
| OFFSET_LIST      | calib |     | List of coordinate offsets (and optional flux   |
|                  |       |     | scale factors) (optional)                       |
| FILTER_LIST      | calib |     | File to be used to create field-of-view images. |
|                  |       |     | (optional)                                      |
| OUTPUT_WCS       | calib |     | WCS to override output cube location / di-      |
|                  |       |     | mensions (see data format chapter for details)  |
|                  |       |     | (optional)                                      |



## **Recipe parameters**

| Parameter | Type   | Values                                                                | Description                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-----------|--------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|           |        | default, other                                                        |                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| save      | string | cube                                                                  | Select output product(s) to save. Can contain<br>one or more of "cube" (output cube and asso-<br>ciated images; if this is not given, no resam-<br>pling is done at all) or "combined" (fully re-<br>duced and combined simplicable for the full set of                                                                                                    |  |  |  |  |  |  |
|           |        |                                                                       | exposures; this is useful, if the final resampling<br>step is to be done again separately). If sev-<br>eral options are given, they have to be comma-<br>separated.                                                                                                                                                                                        |  |  |  |  |  |  |
| resample  | string | drizzle, nearest,<br>linear, quadratic,<br>renka, drizzle,<br>lanczos | The resampling technique to use for the final output cube.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| dx        | double | 0.0                                                                   | Horizontal step size for resampling (in arcsec or<br>pixel). The following defaults are taken when<br>this value is set to 0.0: 0.2" for WFM, 0.025"<br>for NFM, 1.0 if data is in pixel units.                                                                                                                                                            |  |  |  |  |  |  |
| dy        | double | 0.0                                                                   | Vertical step size for resampling (in arcsec or<br>pixel). The following defaults are taken when<br>this value is set to 0.0: 0.2" for WFM, 0.025"<br>for NFM, 1.0 if data is in pixel units.                                                                                                                                                              |  |  |  |  |  |  |
| dlambda   | double | 0.0                                                                   | Wavelength step size (in Angstrom). Natural instrument sampling is used, if this is 0.0                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| crtype    | string | median, iraf,<br>mean, median                                         | Type of statistics used for detection of cos-<br>mic rays during final resampling. "iraf" uses<br>the variance information, "mean" uses standard<br>(mean/stdev) statistics, "median" uses median<br>and the median median of the absolute median<br>deviation.                                                                                            |  |  |  |  |  |  |
| crsigma   | double | 10.                                                                   | Sigma rejection factor to use for cosmic ray re-<br>jection during final resampling. A zero or neg-<br>ative value switches cosmic ray rejection off.                                                                                                                                                                                                      |  |  |  |  |  |  |
| rc        | double | 1.25                                                                  | Critical radius for the "renka" resampling method.                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| pixfrac   | string | 0.6,0.6                                                               | Pixel down-scaling factor for the "drizzle" re-<br>sampling method. Up to three, comma-<br>separated, floating-point values can be given. If<br>only one value is given, it applies to all dimen-<br>sions, two values are interpreted as spatial and<br>spectral direction, respectively, while three are<br>taken as horizontal, vertical, and spectral. |  |  |  |  |  |  |
| ld        | int    | 1                                                                     | Number of adjacent pixels to take into account<br>during resampling in all three directions (loop<br>distance); this affects all resampling methods<br>except "nearest".<br>Continued on next page                                                                                                                                                         |  |  |  |  |  |  |



| – continued from previous page |        |                |                                                  |  |  |  |  |  |  |
|--------------------------------|--------|----------------|--------------------------------------------------|--|--|--|--|--|--|
| Parameter                      | Type   | Values         | Description                                      |  |  |  |  |  |  |
|                                |        | default, other |                                                  |  |  |  |  |  |  |
| format                         | string | Cube, Cube,    | Type of output file format, "Cube" is a standard |  |  |  |  |  |  |
|                                |        | Euro3D, xCube, | FITS cube with NAXIS=3 and multiple exten-       |  |  |  |  |  |  |
|                                |        | xEuro3D,       | sions (for data and variance). The extended      |  |  |  |  |  |  |
|                                |        | sdpCube        | "x" formats include the reconstructed image(s)   |  |  |  |  |  |  |
|                                |        |                | in FITS image extensions within the same file.   |  |  |  |  |  |  |
|                                |        |                | "sdpCube" does some extra calculations to cre-   |  |  |  |  |  |  |
|                                |        |                | ate FITS keywords for the ESO Science Data       |  |  |  |  |  |  |
|                                |        |                | Products.                                        |  |  |  |  |  |  |
| weight                         | string | exptime,       | Type of weighting scheme to use when com-        |  |  |  |  |  |  |
|                                |        | exptime, fwhm, | bining multiple exposures. "exptime" just uses   |  |  |  |  |  |  |
|                                |        | header, none   | the exposure time to weight the exposures,       |  |  |  |  |  |  |
|                                |        |                | "fwhm" uses the best available seeing informa-   |  |  |  |  |  |  |
|                                |        |                | tion from the headers as well, "header" queries  |  |  |  |  |  |  |
|                                |        |                | ESO.DRS.MUSE.WEIGHT of each input file           |  |  |  |  |  |  |
|                                |        |                | instead of the FWHM, and "none" preserves an     |  |  |  |  |  |  |
|                                |        |                | existing weight column in the input pixel tables |  |  |  |  |  |  |
|                                |        |                | without changes.                                 |  |  |  |  |  |  |
| filter                         | string | white          | The filter name(s) to be used for the output     |  |  |  |  |  |  |
|                                |        |                | field-of-view image. Each name has to corre-     |  |  |  |  |  |  |
|                                |        |                | spond to an EXTNAME in an extension of the       |  |  |  |  |  |  |
|                                |        |                | FILTER_LIST file. If an unsupported filter       |  |  |  |  |  |  |
|                                |        |                | name is given, creation of the respective image  |  |  |  |  |  |  |
|                                |        |                | is omitted. If multiple filter names are given,  |  |  |  |  |  |  |
|                                |        |                | they have to be comma separated.                 |  |  |  |  |  |  |
| lambdamin                      | double | 4000.          | Cut off the data below this wavelength after     |  |  |  |  |  |  |
|                                |        |                | loading the pixel table(s).                      |  |  |  |  |  |  |
| lambdamax                      | double | 10000.         | Cut off the data above this wavelength after     |  |  |  |  |  |  |
|                                |        |                | loading the pixel table(s).                      |  |  |  |  |  |  |

### **Product frames**

The following product frames are created by the recipe:

| Default file name | Description                                            |
|-------------------|--------------------------------------------------------|
| DATACUBE_FINAL    | Output datacube (ifsave contains "cube")               |
| IMAGE_FOV         | Field-of-view images corresponding to the "filter" pa- |
|                   | rameter (ifsave contains "cube").                      |
| PIXTABLE_COMBINED | Combined pixel table (ifsave contains "combined")      |

### Quality control parameters

The following quality control parameters are available for the **muse** exp combine products:

QC.EXPCOMB.NDET Number of detected sources in combined cube.

QC.EXPCOMB.LAMBDA Wavelength of plane in combined cube that was used for object detection.

 $\label{eq:QC.EXPCOMB.POSk.X} \mbox{Position of source $k$ in $x$-direction in combined cube. If the FWHM measurement fails, this value will be -1.}$ 



- QC.EXPCOMB.POSk.Y Position of source k in y-direction in combined cube. If the FWHM measurement fails, this value will be -1.
- QC.EXPCOMB.FWHMk.X FWHM of source k in x-direction in combined cube. If the FWHM measurement fails, this value will be -1.
- QC.EXPCOMB.FWHMk.Y FWHM of source k in y-direction in combined cube. If the FWHM measurement fails, this value will be -1.
- QC.EXPCOMB.FWHM.NVALID Number of detected sources with valid FWHM in combined cube.
- QC.EXPCOMB.FWHM.MEDIAN Median FWHM of all sources with valid FWHM measurement (in x- and y-direction) in combined cube. If less than three sources with valid FWHM are detected, this value is zero.
- QC.EXPCOMB.FWHM.MAD Median absolute deviation of the FWHM of all sources with valid FWHM measurement (in x- and y-direction) in combined cube. If less than three sources with valid FWHM are detected, this value is zero.



# Chapter 8

# Tips & Troubleshooting

# 8.1 The output of the logfile

The logfile contains a lot of information that is related to the data reduction. Especially, if you encounter a problem, reading the logfile is likely to give you an idea at which point in the process the problem occurred. The logfile displays the following messages preceded by a time-stamp:

 $[\ {\tt INFO}\ ]$  - These lines tell the user what processing the pipeline is doing, at which point, and with which files.

[ DEBUG ] - Here more technical details and information are given (e.g. the number of pixels rejected in a cosmic ray rejection). Usually, one needs to change settings to see them (i.e. use --msg-level=debug or --log-level=debug with esorex). This should be done for all bug reports, but should not be necessary for normal operations.

[WARNING] - These messages warn about possible anomalies in the data. They also point out non-standard settings. They do not cause the pipeline to fail, but it is wise to check the data carefully afterwards.

[ ERROR ] - These are lines where a process in the pipeline could not finish properly or where a significant part of the process failed. The error code and the corresponding line in the code is usually printed. If possible, an explanation is given of why the failure occurred.

# 8.2 Restricting wavelength ranges

All post-processing recipes read pixel tables. When testing such steps of the data reduction, it can be benificial to work on only a subset of the data, like a small wavelength range. All relevant recipes therefore support the --lambdamin and --lambdamax recipe parameters. This causes the code to still read the full pixel tables, but then the pixels with wavelengths not in the given range are discarded.<sup>1</sup> This can be used to speed up processing and constrain memory consumption, e.g. to test parameter ranges that affect the cube reconstruction. Note, however, that they may have unforeseen consequences if e.g. the data are truncated right on a bright sky line.

# 8.3 Debugging options

Certain environmental variables for testing and debugging were created while developing the pipeline. Many of them might prove useful to you, if your data cannot be reduced with the usual options that are

<sup>&</sup>lt;sup>1</sup>Since the pixel tables are not and cannot be sorted, reading the full tables is necessary. It causes a temporary peak in memory usage to at least the size of the pixel table.



exposed through the recipe interface. Also, you might want to dig deeper into the analysis of what is done to your data during the reduction process.

As these are environment variables and not recipe options, they are set outside of the recipe call. For example, in the bash shell (or your bash script) this would look like this:

/home/user> export MUSE\_DEBUG\_WAVECAL=1

In a Python-CPL script, it is set as property of the corresponding recipe, however, not as a parameter, but as an environment variable. For example:

muse\_wavecal.env['MUSE\_DEBUG\_WAVECAL'] = 1

You can find a list of the environment variables at the end of the **README** file of your MUSE installation (usually in **\$prefix/share/doc/esopipes/muse-2.8.3**). Remember that these variables are entirely optional. Please proceed with caution when using them, they might generate a large number of files, output that you may be unfamiliar with, or cause unexpected side effects.

# 8.4 Tools for debugging and verification

Usually, the QC parameters as documented in Sect. 7 as well as message printed by should give a good basis to verify that the processing worked as expected. But in some cases, as visual verification is necessary. In other cases, tools are needed to aid debugging of a problem. A few such tools are shipped with the MUSE pipeline and get installed with it (into \${prefix}/bin), they are described in this section.

The visual tools use gnuplot<sup>2</sup> for plotting.<sup>3</sup> All tools mentioned here give a usage hint when called without parameters.

### 8.4.1 Verification of the tracing solution

When one has doubts about the validity of the tracing solution computed by the **muse\_flat** recipe, one can specify the **--samples** parameter so that the extra output product **TRACE\_SAMPLES** is written (one file per IFU).

This file contains all tracing samples computed by the recipe, i.e. left and right edge as well as the slice center at many vertical positions. These can be plotted using the tool muse\_trace\_plot\_samples. If just using this file, only the central two slices are plotted:

### muse\_trace\_plot\_samples TRACE\_SAMPLES-06.fits

If one also passes the number of the slices to show, one can e.g. plot all slices:

muse\_trace\_plot\_samples -s1 1 -s2 48 TRACE\_SAMPLES-06.fits

*Tip*: when the default gnuplet setup is used (with the x11, wxt, or qt "terminals"), one can use the right mouse button on the window that appears to zoom the display to a rectangular region.

When also passing the tracing table on the command line, the tool plots the polynomial solutions for both edges and the center over the crosses that mark the sampling points:

<sup>&</sup>lt;sup>2</sup>Available from http://www.gnuplot.info/.

<sup>&</sup>lt;sup>3</sup>The plots can hence be customized in the same way as other gnuplot-based scripts. One can use e.g. using the file **\$HOME/.gnuplot** to set up the preferred terminal type or cause gnuplot to write to a file instead of displaying a window.





Figure 8.1: The graphical window showing the output of the muse\_trace\_plot\_samples tool, then plotting slices 12 to 20 in IFU 6, using the trace samples table, the trace table, and the master flat-field image (see text for details).

### muse\_trace\_plot\_samples -s1 1 -s2 48 TRACE\_SAMPLES-06.fits TRACE\_TABLE-06.fits

Here, one has to be careful to select files that belong to the same IFU! Then one can visually verify that the polynomial solution matches the individual traced points.

Finally, one can also use the master flat-field product as background of the plot, so that one can actually check that the tracing points were correctly computed:

# muse\_trace\_plot\_samples -s1 12 -s2 20 TRACE\_SAMPLES-06.fits TRACE\_TABLE-06.fits \ MASTER\_FLAT-06.fits

Plotting this may take a while, so it's advisable to only use a subset of the slices. The result of this command is shown in Fig. 8.1.

The widths of the slices on the CCD should be around 77 pixels, but their actual widths may slowly vary between top and bottom of the CCD, and between the slices near the edges and in the middle of the CCD. The tool muse\_trace\_plot\_widths was written to help assess that there are no sudden jumps in the tracing. When called with a tracing samples table, the samples of all slices are shown, as displayed in Fig. 8.2. A color gradient (from green on the left of the CCD to red on the right) plus different symbols are used to make the slices distinguishable. It is apparent that the slices on the edges of the CCD are the widest (above 78 pix) while those near the center of the CCD are narrow (below 76 pixels).





Figure 8.2: The graphical window showing the output of the muse\_trace\_plot\_widths tool, plotting slices 1 to 48 of IFU 6, using the trace samples table (see text for details).

### 8.4.2 Verification of the wavelength solution

The tool muse\_wave\_plot\_residuals can be used to verify the two-dimensional wavelength solution of each slice or of all slices of one IFU. To use it one needs to run the muse\_wavecal recipe with the --residuals option, so that the extra product WAVECAL\_RESIDUALS is created. Then one can run e.g.

### muse\_wave\_plot\_residuals WAVECAL\_RESIDUALS-10.fits

and get a 2D map in CCD coordinates of the residuals of all the computed arc line centers with respect to the final solution. This is displayed in Fig. 8.3. There, one can see regions on the CCD that are not covered by arc lines as white patches, and the points with the strongest blue and red colors give the strongest deviations from the final solution. One can use the same command to change the vertical axis of the plot from CCD pixels to wavelength, using the -1 parameter:

### muse\_wave\_plot\_residuals -1 WAVECAL\_RESIDUALS-10.fits

In case one wants to look at only one slice, one can use the **-s** parameter with a slice number; color cuts are adjustable using the **-c** parameter with two numbers, and one can study a different iteration (by default, the final iteration of the fit in each slice is selected), using **-i** and a positive integer.

When looking more in detail into the solution of a single slice, one can use the  $muse_wave_plot_column$  tool. This needs both the wavelength calibration table and the table with the residuals (make sure to pass the tables of the same run and IFU!). It can be used on the data of a single slice (parameter -s) or on a single CCD column (-c). It is most useful when displaying the vertical axis as residuals, using -r. Fig. 8.4 shows the output of the command

#### muse\_wave\_plot\_column -s 12 -r WAVECAL\_TABLE-10.fits WAVECAL\_RESIDUALS-10.fits







Figure 8.3: The graphical window showing the output of the muse\_wave\_plot\_residuals tool, plotting all slices of IFU 10, using the wavelength calibration residuals table (see text for details).

This is an example of a good calibration with low residuals (the final RMS for the solution in this slice was 0.030 Å). The tool has automatically selected all columns belonging to this slice and colored them according to their horizontal position on the CCD (green is left, red is right), and used different symbols. As one can see, the fainter arc lines (like the NeI line at 5400.6 Å) have typically a much larger spread of residuals than the bright lines (e.g. NeI at 6678.3 Å). With default parameters of **muse\_wavecal** (--fitweighting=cerrscatter) the weak lines are hence weighted much less in the fit of the wavelength solution than bright lines.

### 8.4.3 Handling of MUSE pixel tables

Since MUSE pixel tables are heavily used as intermediate data products, and they have one special column that is not easy to interpret (the "origin" column), a tool was added to make its content easily readable, muse\_pixtable\_dump. One should always use the -c parameter to limit the number of rows that are displayed, otherwise it might take very long to complete. One should also give the starting row of the region that one is interested in, using -s:

muse\_pixtable\_dump -s 100000 -c 10 PIXTABLE\_OBJECT\_0001-01.fits

This command results in the output:

| # | MUSE pixe | el table "PIX | TABLE_0 | BJECT_0001- | 01.fits", she | owing 10 row | ws starting a | at index 100 | 000 of 13 | 51432 | 29   |         |      |         |       |
|---|-----------|---------------|---------|-------------|---------------|--------------|---------------|--------------|-----------|-------|------|---------|------|---------|-------|
| # | xpos      | ypos          |         | lambda      | data          | dq           | stat          | weight       | exposure  | IFU   | xCCD | yCCD    | xRaw | yRaw    | slice |
| # |           | pix           | pix     | Angstrom    | (flux)        | flag         | (flux**2)     |              | No        | No    | pix  | pix     | pix  | pix     | No    |
| # | flux :    | in [count]    |         |             |               |              |               |              |           |       |      |         |      |         |       |
| # | flux**2 : | in [count**2] |         |             |               |              |               |              |           |       |      |         |      |         |       |
|   | -78.72976 | 6685 -141.46  | 130371  | 6346.222    | 1.35237e+01   | 0x00000000   | 1.62160e+01   | 0.0000e+00   | 0         | 1     | 47   | 1438    | 79   | 1470    | 1     |
|   | -79.66138 | 3458 -141.48  | 033142  | 6346.263    | 8.97605e+00   | 0x00000000   | 1.28346e+01   | 0.0000e+00   | 0         | 1     | 48   | 1438    | 80   | 1470    | 1     |
|   | -80.59300 | 0232 -141.49  | 934387  | 6346.304    | 1.71657e+01   | 0x00000000   | 1.90208e+01   | 0.0000e+00   | 0         | 1     | 49   | 1438    | 81   | 1470    | 1     |
|   | -81.5246  | 2769 -141.51  | 837158  | 6346.346    | 1.49865e+01   | 0x00000000   | 1.73776e+01   | 0.0000e+00   | 0         | 1     | 50   | 1438    | 82   | 1470    | 1     |
|   | -82.45624 | 4542 -141.53  | 739929  | 6346.388    | 1.54953e+01   | 0x00000000   | 1.70677e+01   | 0.0000e+00   | 0         | 1     | 51   | 1438    | 83   | 1470    | 1     |
|   | -83.38786 | 6316 -141.55  | 642700  | 6346.430    | 1.67681e+01   | 0x00000000   | 1.85787e+01   | 0.0000e+00   | 0         | 1     | 52   | 1438    | 84   | 1470    | 1     |
|   | -84.31948 | 3090 -141.57  | 545471  | 6346.472    | 7.34210e+00   | 0x00000000   | 1.16375e+01   | 0.0000e+00   | 0         | 1     | 53   | 1438    | 85   | 1470    | 1     |
|   | -85.25110 | 0626 -141.59  | 446716  | 6346.515    | 1.18395e+01   | 0x00000000   | 1.47541e+01   | 0.0000e+00   | 0         | 1     | 54   | 1438    | 86   | 1470    | 1     |
|   | -86.18272 | 2400 -141.61  | 349487  | 6346.558    | 1.56828e+01   | 0x00000000   | 1.79335e+01   | 0.0000e+00   | 0         | 1     | 55   | 1438    | 87   | 1470    | 1     |
|   | 07 1142   | 1174 141 63   | 050050  | 6346 601    | 1 00050-101   | 000000000    | 1 54010-101   | 0 0000-100   | 0         | 4     | EC.  | 1 1 2 0 | 00   | 1 4 7 0 | 4     |





Figure 8.4: The graphical window showing the output of the muse\_wave\_plot\_column tool, plotting slice 12 of IFU 10, using the wavelength calibration residuals and wavelength calibration tables (see text for details).

Unlike other FITS-table related tools it interprets the "origin" column and all special FITS headers to resolve the originating CCD pixel, slice, IFU, and exposure number of each entry in the table. If the "exposure" column in the output displays zeros, then the pixel table only contains one exposure. The two "CCD" columns in the output give the coordinates on the trimmed image, while the "Raw" columns use the un-trimmed coordinates found in the unprocessed raw data from the instrument.

Another tool that might be useful is muse\_pixtable\_crop, to extract part of a pixel table into another file. The crop regions can be one of the two spatial axes, or the wavelength axis. The following command cuts the input table simultaneously in the x-direction and in wavelength:

Since the spatial pixel table columns change depending of the stage of the processing, care must by taken to use values for the correct units. The command therefore echos the range specified with the units expected for a given pixel table. The command above outputs:

The tool muse\_pixtable\_erase\_slice can be used to remove the data of a complete slice of one IFU from a pixel table. When run like this

muse\_pixtable\_erase\_slice PIXTABLE\_OBJECT\_0005-14.fits 14 10 \



### PIXTABLE\_OBJECT\_0005-14\_e10.fits

it erases slice 10 (numbering on the CCD) from a pixel table of IFU 14 as produced by **muse\_scibasic**. The IFU number is always required on the command line, so that when given a pixel table with multiple IFUs in it, the tool knows for which one to erase the slice:

### 

If a pixel table contains even multiple exposures, then it erases the given slice of the given IFU of all exposures.

## 8.4.4 Handling of MUSE bad pixel maps

Three tools exist to create or supplement MUSE bad pixel tables (the BADPIX\_TABLE files), that are optionally read by every recipe that starts from raw data (see Sect. 7.1).

If one wants to start such a bad pixel table, one can start with one of the image-based master calibrations. These contain a DQ extension that is a bad pixel map. While this is automatically used by subsequent recipes, one can transform it into a bad pixel table with the muse\_badpix\_from\_dq tool:

### muse\_badpix\_from\_dq MASTER\_FLAT-10.fits BADPIX\_TABLE-10.fits

This would create a new table containing all bad pixels that were detected by the **muse\_flat** recipes (including those that were present in all inputs into that run of **muse\_flat**). Since the tool gets the full FITS file including all headers of the output product, it can set up the correct FITS headers for the bad pixel table. This tool can also be used to merge flagged pixels from the DQ extension into an existing table:

muse\_badpix\_from\_dq -i BADPIX\_TABLE\_in.fits MASTER\_FLAT-10.fits BADPIX\_TABLE\_out.fits

If one has manually recorded single bad pixels in an ASCII file or measured regions of bad pixels, one can use muse\_badpix\_from\_ascii or muse\_badpix\_from\_region. Here, one needs to specify the IFU that contains the bad pixels to store, since no FITS header with the information is available:

```
muse_badpix_from_ascii bad_pixels.ascii 12 BADPIX_TABLE_12.fits
muse_badpix_from_region [10:12,100:2000] 256 12 BADPIX_TABLE_12.fits
```

muse\_badpix\_from\_region requires the region to be in the format [x1:x2,y1:y2] and also needs a Euro3D-like flag value as 2nd argument. The ASCII table has to contain three values per row (x-position, y-position, and flag value). By default, both tools expect the coordinates to be measured on the raw image; if they were determined on trimmed data instead, the -t argument has to be set:

```
muse_badpix_from_ascii -t bad_pixels.ascii 12 BADPIX_TABLE_12.fits
muse_badpix_from_region -t [10:12,100:2000] 256 12 BADPIX_TABLE_12.fits
```

Again, these tools can be used to supplement the information in existing bad pixel tables; these can be passed in with the -i parameter:



### 8.4.5 Tools to deal with (partial) output cubes

### Reconstructing cubes from many exposures over small field

The tool muse\_cube\_combine is useful, if one has to deal with a large dataset which cannot be fully combined with the muse\_scipost or muse\_exp\_combine recipes. In that case, one can run muse\_exp\_combine several times, setting the wavelength limits (see Sect. 8.2) such that they overlap in only about 2 wavelength planes in the output cubes. One then has to take care to resample all subcubes to the same output grid, defined using the OUTPUT\_WCS input (see Sect. 7.2.6 and Sect. A). They will then only be filled at the relevant wavelength ranges, the rest will contain NANs. Then this tool can be used to combine them into a fully populated cube.

As an example, a dataset is too large to fit into memory at once, but does fit, if split into three sections. Then one runs **muse** exp combine with the parameters

esorex muse\_exp\_combine [...] --lambdamax=6285. ec.sof
mv DATACUBE\_FINAL.fits CUBE\_blue.fits
esorex muse\_exp\_combine [...] --lambdamin=6282.5 --lambdamax=7817.5 ec.sof
mv DATACUBE\_FINAL.fits CUBE\_green.fits
esorex muse\_exp\_combine [...] --lambdamin=7815. ec.sof
mv DATACUBE\_FINAL.fits CUBE\_red.fits

and the following sof

PIXTABLE\_REDUCED\_1.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_2.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_3.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_4.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_5.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_6.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_7.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_8.fits PIXTABLE\_REDUCED PIXTABLE\_REDUCED\_9.fits PIXTABLE\_REDUCED TEST\_CUBE\_header.fits OUTPUT\_WCS

The FITS header of the FITS cube should then contain a fully defined world coordinate system in the CDi\_j notation that is large enough to include all the data.<sup>4</sup> Then, muse\_cube\_combine can be run in the following way

muse\_cube\_combine CUBE\_COMBINED.fits CUBE\_blue.fits CUBE\_green.fits CUBE\_red.fits

This will automatically analyze the PRO.RECi.PARAMj.NAME and PRO.RECi.PARAMj.VALUE keywords in the headers of the CUBE\_<color>.fits pipeline outputs to determine the wavelength range used, throw away the small overlaps (which are needed to guard against edge effects), sort the exposures according to the wavelength they cover, and then copy the relevant wavelength planes (both DATA and STAT extensions) into the single output cube.

 $<sup>{}^{4}</sup>$ It can be the header of a cube of one of the exposures as it comes out of **muse\_scipost**, but edited by hand to be larger, or positioned differently.



### Reconstructing cubes from many exposures over big field

In case the cube itself is already big compared to memory of the machine, one has to use a somewhat different strategy. This case can happen for the case of large mosaics, like e.g. the Orion Nebula (Weilbacher et al. 2015).

In this case one needs to create dedicated OUTPUT\_WCS files for each wavelength range. They should describe grids that are exactly adjacent in wavelength and about three bins smaller than the wavelength range given to muse\_exp\_combine by the lambdamin/max parameters. If a case where the data is four times as big as the available RAM and it has a large field of view, then one would need to create four different OUTPUT\_WCSs. In the normal case, these files would all have CD3\_3=1.25 and CRPIX3=1., but change in the values of NAXIS3 and CRVAL3. There we print commands and the keywords that change in the OUTPUT\_WCS, for each of the four ranges:

```
range 1:
   CRVAL3=4600.0
   NAXIS3=1120
   esorex muse_exp_combine [...] --lambdamax=6003.0 ec.sof
   mv DATACUBE_FINAL.fits CUBE_1.fits
range 2:
   CRVAL3=6000.0
   NAXIS3=800
   esorex muse_exp_combine [...] --lambdamin=5997.0 --lambdamax=7003.0 ec.sof
   mv DATACUBE_FINAL.fits CUBE_2.fits
range 3:
   CRVAL3=7000.0
   NAXIS3=800
   esorex muse_exp_combine [...] --lambdamin=6997.0 --lambdamax=8003.0 ec.sof
   mv DATACUBE_FINAL.fits CUBE_3.fits
range 4:
   CRVAL3=8000.0
   NAXIS3=1040
   esorex muse_exp_combine [...] --lambdamin=7997.0 ec.sof
   mv DATACUBE_FINAL.fits CUBE_4.fits
```

The combination then needs to use a different tool, called muse\_cube\_concatenate, like this

muse\_cube\_concatenate CUBE\_final.fits CUBE\_1.fits CUBE\_2.fits CUBE\_3.fits CUBE\_4.fits

The output cube CUBE\_final.fits then contains a contiguous wavelength coverage, from 4600 to 9300 Å.

### Integrating cubes using filter functions

The program muse\_cube\_filter can be used to integrate an existing cube in dispersion direction over a filter function. This is normally done by muse\_scipost or muse\_exp\_combine, but if a filter was forgotten when running those recipes, or when muse\_cube\_combine or muse\_cube\_concatenate were used, additional filter-images can be produced with this tool. Typical usage is

muse\_cube\_filter -f Johnson\_V,Cousins\_R,Cousins\_I DATACUBE.fits filter\_list.fits

to create images in the V, R, and I filters for the given cube. Only filters in the given filter list file are used.



In the case above, the images are saved as separate files with the filter name before the .fits extension, e.g. DATACUBE\_Cousins\_R.fits. One can instead select to save the images as new extensions in the input file, using the -x option:

muse\_cube\_filter -x -f Johnson\_V,Cousins\_R,Cousins\_I DATACUBE.fits filter\_list.fits

The pre-existing data remains unchanged, the new images are just appended to the input file. (Note that no backup of the original file is created.)

This tool uses the same routine as the pipeline recipes that create output cubes (and optional IMAGE\_FOVs). The integration over the filter is done using

$$f_{\text{pixel}} = \frac{\sum w_{\text{filter}} \delta \lambda \ f_{\text{voxel}}}{\sum w_{\text{filter}} \delta \lambda}$$

where the  $w_{\text{filter}}$  are the unitless transmission values of the filter involved,  $\delta\lambda$  is the size of each wavelength bin (in Angstrom) and  $f_{\text{voxel}}$  is the flux of the voxel (in units of erg s<sup>-1</sup> cm<sup>-2</sup> Angstrom<sup>-1</sup>). The output  $f_{\text{pixel}}$  are then the pixel values of the output field-of-view image, in the same units.

Some of the standard filters that are distributed with the MUSE pipeline (e.g. the Johnson V filter) have known photometric zeropoints to compute magnitudes in both the Vega and AB systems. These are propagated in the FITS header of the IMAGE\_FOV file or image extension of the cube (keywords DRS.MUSE.FILTER.ZPVEGA and DRS.MUSE.FILTER.ZPAB), together with a keyword that tells the user how much of the filter area was actually covered by the MUSE data that was integrated (DRS.MUSE.FILTER.FRACTION). Using these zeropoints only makes sense, if this filter coverage-fraction is very high (i.e. above 99%) and if the corresponding cube was flux-calibrated. One then also needs to make sure to use the scale factor that is given as part of the BUNIT keyword. Filters that do not carry the zeropoints (like the builtin "white" filter and the special "Kron V" filter for do instrument-internal calibration) cannot be used to do photometry.

### 8.4.6 Other tools

The tool muse\_geo\_plot can be used to create a visual representation of a MUSE geometry table. Its operation has already been described briefly in Sect. 5.1.7.

Another tool that may be useful for some special cases is muse\_fill\_image. This might be used to e.g. create dark frames with a constant dark value. When doing this to feed files into the MUSE pipeline one should use a real output product as starting point. To create "dummy" flat-fields one would use:

```
for ifu in {01..24} ; do
  muse_fill_image -d 1. -q 0 -s 0. MASTER_FLAT-${ifu}.fits DUMMY_FLAT-${ifu}.fits &
  done ; wait
```

This could be used to process technical exposures with the **muse\_scibasic** recipe when real flat-fielding is not desirable but should *not* be used with scientific data, since this usually results in datacubes with weird artifacts.

## 8.5 Typical failure cases

In many cases, ERRORs and WARNINGs of the MUSE pipeline alert the user of a problem with the data or the reduction. In the following, a few likely cases and solutions for them are described.





Figure 8.5: The graphical window showing the output of the muse\_trace\_plot\_samples tool (see text for details).

### 8.5.1 Failed tracing

In some cases, vignetting of the slices on the edge of an IFU is severe enough to cause tracing to fail when running the **muse flat** recipe. A typical error message is

[ ERROR ] muse\_flat: muse\_trace: [tid=005] The trace fit in slice 10 of IFU 6 failed

likely followed by more warnings and errors. The output TRACE\_TABLE then contains invalid elements in the row for that slice. This causes subsequent problems for the wavelength calibration (muse\_wavecal and twilight handling (muse\_twilight). Most critically, the science reduction (muse\_scibasic) will stop when detecting such a broken trace table.

If this is the case, the most likely fix is to carefully adjust the --edgefrac parameter of the muse\_flat recipe, from the default value downwards to e.g. 0.4 or 0.3 (when lowering the value too much, the pipeline might not be able to tell the slices apart any more.) It is likely, that warnings continue to appear for the darkest slices, so it is advisable to run the recipe with the --samples parameter, so that the TRACE\_SAMPLES output is created. This can then be used with the command

(see Fig. 8.5) to visually verify that the trace table contains a good description of the slice location.

# 8.6 Correcting coordinate offsets

When combining multiple exposures, the pipeline (the recipes **muse\_scipost** and **muse\_exp\_combine**) does a good job to automatically recover the relative offsets from the information in the FITS header of each exposure, *provided that two conditions are met*: 1. the same VLT guide star was used to observe all exposures, 2. the exposures were all taken at the same position angle.



Since MUSE exposures are often observed using a dither pattern that involves 90 deg rotations, condition 2 is often not true, and the user has to provide offset corrections to the pipeline.<sup>5</sup> This can be done in two ways:

• Edit the FITS headers.

Before starting **muse\_scipost** or **muse\_exp\_combine** to create a combined cube, edit the FITS headers of the input files and replace the **RA** and **DEC** headers with corrected values that are measured externally.

• Provide offsets.

This can currently be done using the columns RA\_OFFSET and DEC\_OFFSET in the OFFSET\_LIST table. Each row in this table has to contain a these two values (or zero, if the offset is negligible) *and* a DATE-OBS value corresponding to the exposure in question (in the DATE\_OBS column).

These offsets can be computed using the **muse\_exp\_align** recipe, if the exposures overlap significantly. Otherwise, the table can be edited by other means. Then, each number is the direct difference of the *measured* position to the *reference* position (no  $\cos \delta$ !), the values are interpreted in units of degrees:

$$RA_OFFSET = RA_{measured} - RA_{reference}$$
  
DEC OFFSET = DEC<sub>measured</sub> - DEC<sub>reference</sub>

In this case, the applied offsets are recorded in a set of  $\tt DRS.MUSE.OFFSETi$  keywords of the output cube.  $^6$ 

Instead of a recipe, an template table in the format required of OFFSET\_LIST can also be created using the muse\_offset\_list\_create tool, e.g. with

```
muse_offset_list_create OFFSET_LIST.fits PIXTAB1.fits PIXTAB2.fits PIXTAB3.fits
```

This transfers the DATE-OBS and MJD-OBS from the pixel tables into the table, then one can edit the table using Python or FitsView ( $fv^7$ ). If one passes the same .sof to it as to muse\_exp\_combine afterwards, one does not need to give every pixel table separately:

muse\_offset\_list\_create -s expcombine.sof OFFSET\_LIST.fits

If the same offset should be applied on single exposures (e.g. for testing), one can input the same OFFSET\_LIST into muse scipost.

# 8.7 Correcting relative fluxes

In case an object was observed in non-photometric conditions and exposures need to be adapted relative to each other or to an absolute flux measurement, the column FLUX\_SCALE in the OFFSET\_LIST table can be adapted and set to values different from unity. As for the spatial offsets, both recipes **muse\_scipost** and **muse\_exp\_combine** react to this information. The scaling value is again assigned to the exposures using the DATE-OBS string in the DATE\_OBS column of the table. The data of the exposures are multiplied with the scale factors in the table, the variance (STAT) is treated accordingly.

<sup>&</sup>lt;sup>5</sup>This is due to a slight decentering of the axis of the derotator, leading to a "derotator wobble".

 $<sup>^{6}</sup>$ The messages by the pipeline in *debug*-mode can be used to verify the applied offsets as well, but the default INFO-message only gives the approximate final offsets relative to the first exposure in the sequence.

<sup>&</sup>lt;sup>7</sup>http://heasarc.gsfc.nasa.gov/ftools/fv



Any applied flux scaling can be verified in the output cube, using the DRS.MUSE.FLUX.SCALEi keywords in conjunction with the DRS.MUSE.OFFSETi.DATE-OBS entry. The latter uniquely identifies the exposure which was scaled.

# 8.8 Ticket system

If you encounter a problem with the pipeline, get an error message you cannot understand, or cannot resolve issues that are related to the pipeline, ask for help.

Members of the MUSE consortium can use the CRAL gitlab system at https://git-cral.univ-lyon1. fr/MUSE/DRS/issues to report a problem.

If you are not a member of the MUSE consortium, please use ESO's Helpdesk address email:usd-help@ eso.org.



# Appendix A

# **Data Format Description**

The MUSE pipeline uses and produces a number of files in different formats, which are described in this section. For each data format, the structure of the FITS extensions is described, and the tags of all frames are listed that use this format.

# A.1 Data Formats

The MUSE pipeline uses and produces a number of files in different formats, which are described in this section. For each data format, the structure of the FITS extensions is described, and the tags of all frames are listed that use this format.

### A.1.1 Raw Data Files

### RAW IMAGE

### Description

Raw CCD images taken with the MUSE instrument. Files coming from the instrument usually contain all 24 images from the IFUs in a single file.

### **FITS** extensions

• 2D FITS image (int), may appear 24 times Data from one IFU.

### Frame tags

- BIAS: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='BIAS' Raw data taken with zero exposure time and closed shutter.
- **DARK**: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='DARK' Raw data taken with positive exposure time and closed shutter.
- FLAT: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='FLAT,LAMP' Raw exposure of a continuum lamp exposure illuminating the whole field of view.



- ILLUM: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='FLAT,LAMP,ILLUM' Raw exposure of a continuum lamp exposure illuminating the whole field of view to correct for temperature dependent illumination changes.
- AMPL: ESO.DPR.CATG=='TECHNICAL' & ESO.DPR.TYPE=='FLAT,LAMP,THRUPUT' Raw exposure of a continuum lamp exposure illuminating the whole field of view, with special FITS headers containing pico amplifier measurements.
- ARC: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='WAVE' Raw exposure of one or more arc lamps illuminating the whole field of view.
- MASK: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='WAVE,MASK' Raw exposure of one or more arc lamps using the multi-pinhole mask for the determination of the relative location of the slices.
- SKYFLAT: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='FLAT,SKY' Raw exposure of the twilight sky.
- **OBJECT**: ESO.DPR.CATG=='SCIENCE' & ESO.DPR.TYPE=='OBJECT' Raw exposure of a science target.
- SKY: ESO.DPR.CATG=='SCIENCE' & ESO.DPR.TYPE=='SKY' Raw exposure of an (almost) empty sky field.
- ASTROMETRY: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='ASTROMETRY' Raw exposure of an astrometric field.
- **STD**: ESO.DPR.CATG=='CALIB' & ESO.DPR.TYPE=='STD'|'STD,TELLU' Raw exposure of a standard star field.


# A.1.2 Static Calibration Files

# LINE CATALOG

### Description

This is a list of arc lines to be used for wavelength calibration. It is a FITS table, with one row for each line, which contains central wavelength of the line in question and a relative strength of the line, if known. The line fluxes may be used in the data reduction software as a first guess to the expected flux, the actual fluxes will be determined using line fitting. Additionally, to identify the lines and associate them with an arc lamp, a column ion (with element and ionization status) and a quality flag are needed. Optionally, a comment column might be useful.

### FITS extensions

• FITS table

| Column name | Type   | Description                                                                                                                                                                                     |
|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lambda      | float  | Wavelength [Angstrom]                                                                                                                                                                           |
| flux        | float  | Relative flux                                                                                                                                                                                   |
| ion         | string | Ion from which the line originates                                                                                                                                                              |
| quality     | int    | Quality flag (0: undetected line, 1: line used for<br>pattern matching, 2: line that is part of a multiplet,<br>3: good line, fully used, 5: bright and isolated line,<br>use as FWHM reference |
| comment     | string | Optional comment (optional column)                                                                                                                                                              |

#### Frame tags

• LINE CATALOG: ESO.PRO.CATG=='LINE\_CATALOG' List of arc lines.

### SKY LINES

#### Description

This type of file contains one or more binary tables with the relative fluxes on the sky emission lines. If both tables are present, they are merged, so that lines should not appear in both tables.

### FITS extensions

• 'LINES': FITS table

| Q 1         | т      |                                               |
|-------------|--------|-----------------------------------------------|
| Column name | Type   | Description                                   |
| name        | string | Line name                                     |
| group       | int    | Line group id                                 |
| lambda      | double | Air wavelength [Angstrom]                     |
| flux        | double | Line flux [10**(-20)*erg/(s cm^2 arcsec^2)]   |
| dq          | int    | Quality of the entry $(>0: \text{ dont use})$ |



• 'OH\_TRANSITIONS': FITS table, optional

| Column name | Type                 | Description                                |
|-------------|----------------------|--------------------------------------------|
| name        | string               | Transition name; like "OH 8-3 P1e(22.5) 2" |
| lambda      | double               | Air wavelength [Angstrom]                  |
| v_u         | $\operatorname{int}$ | Upper transition level                     |
| v_l         | $\operatorname{int}$ | Lower transition level                     |
| nu          | $\operatorname{int}$ | Vibrational momentum                       |
| E_u         | double               | Upper energy [J]                           |
| J_u         | double               | Upper momentum                             |
| A           | double               | Transition probability                     |

### Frame tags

 SKY\_LINES: ES0.PRO.CATG=='SKY\_LINES' Catalog of OH transitions and other sky lines, muse\_create\_sky: Estimated sky line flux table, muse\_scipost: Estimated sky line flux table (if --skymethod=model and --save contains "sky-model")

## RAMAN\_LINES

#### Description

This type of file contains a binary table with the relative fluxes on the raman emission lines.

#### **FITS** extensions

• 'LINES': FITS table

| Column name | Type   | Description                                         |
|-------------|--------|-----------------------------------------------------|
| name        | string | Line name                                           |
| group       | int    | Line group id                                       |
| lambda      | double | Air wavelength [Angstrom]                           |
| flux        | double | Line flux $[10^{**}(-20)^{*erg/(s cm^2 arcsec^2)}]$ |
| dq          | int    | Quality of the entry $(>0: \text{ dont use})$       |

#### Frame tags

• **RAMAN\_LINES**: ESO.PRO.CATG=='RAMAN\_LINES' Catalog of OH transitions and other sky lines

### ASTROMETRY REFERENCE

#### Description

This FITS file lists astrometric sources in fields to be observed with MUSE as astrometric calibrators. It is used by the muse\_astrometry recipe. One such table exists per field; the tables contains a list of



(point) sources. Each row contains information about one object in the field.

The pipeline expects several such tables in multiple binary table extensions of a single FITS file. It then loads the one nearest to the observed sky position, using the RA and DEC keywords present in each FITS extension.

# FITS extensions

• FITS table

| Column name | Туре   | Description                     |
|-------------|--------|---------------------------------|
| SourceID    | string | Source identification           |
| RA          | double | Right ascension [deg]           |
| DEC         | double | Declination [deg]               |
| filter      | string | Filter name used for column mag |
| mag         | double | Object (Vega) magnitude [mag]   |

### Frame tags

• ASTROMETRY\_REFERENCE: ESO.PRO.CATG=='ASTROMETRY\_REFERENCE' Catalog of astrometry reference stars

# EXTINCT\_TABLE

### Description

This is a simple binary FITS table with the dependency of the extinction on wavelength.

The wavelengths should cover at least the MUSE wavelength range. The atmospheric extinction values should be applicable for Paranal, ideally for the night of observations.

### FITS extensions

• FITS table, may appear more than once

| Column name | Туре   | Description              |
|-------------|--------|--------------------------|
| lambda      | double | Wavelength [Angstrom]    |
| extinction  | double | Extinction [mag/airmass] |

### Frame tags

• EXTINCT\_TABLE: ESO.PRO.CATG=='EXTINCT\_TABLE' Atmospheric extinction table

# BADPIX\_TABLE

### Description

This is a FITS table, typically with 24 extensions. It is used in the low-level recipes working on raw data.



Each extension lists known bad pixels of one CCD.

### FITS extensions

• FITS table, may appear 24 times

| Column name | Туре  | Description                                       |
|-------------|-------|---------------------------------------------------|
| xpos        | int   | X position of a bad pixel (on untrimmed raw data) |
|             |       | [pix]                                             |
| ypos        | int   | Y position of a bad pixel (on untrimmed raw data) |
|             |       | [pix]                                             |
| status      | int   | 32bit bad pixel mask as defined by Euro3D         |
| value       | float | Extra value, e.g. depth for traps [count]         |

### Frame tags

• BADPIX\_TABLE: ES0.PRO.CATG=='BADPIX\_TABLE' This file can be used to list known bad pixels that cannot be found by automated test on dark or flat-field frames.

### STD FLUX TABLE

#### Description

This is a binary FITS table with the dependency of the flux on wavelength, and an optional column containing the error of the flux.

The wavelengths should cover at least the MUSE wavelength range.

The pipeline expects several such tables in multiple binary table extensions of a single FITS file. It then loads the one nearest to the observed sky position, using the RA and DEC keywords present in each FITS extension.

#### FITS extensions

• FITS table, may appear more than once

| Column name | Type   | Description                                         |
|-------------|--------|-----------------------------------------------------|
| lambda      | double | Wavelength [Angstrom]                               |
| flux        | double | The standard star flux [erg/s/cm**2/Angstrom]       |
| fluxerr     | double | Error of the standard star flux, optional (optional |
|             |        | m column) [erg/s/cm**2/Angstrom]                    |

#### Frame tags

• **STD\_FLUX\_TABLE**: ESO.PRO.CATG=='STD\_FLUX\_TABLE'

Reference flux distribution of a standard star. Such a table has to exist for each observed standard star.



# FILTER\_LIST

### Description

This FITS table contains all filter functions that can be used for image reconstruction. Each filter curve is contained within one sub-table.

### **FITS** extensions

• FITS table

| Column name | Type   | Description                              |
|-------------|--------|------------------------------------------|
| lambda      | double | Wavelength [Angstrom]                    |
| throughput  | double | Filter throughput (in fractions of $1$ ) |

#### Frame tags

• **FILTER\_LIST**: ESO.PRO.CATG=='FILTER\_LIST' File to be used to create field-of-view images.

## $\mathbf{TELLURIC\_REGIONS}$

#### Description

This FITS table defines wavelength ranges of telluric absorption lines. It can be used to override the internal telluric bands used in the muse\_standard recipe.

#### FITS extensions

• FITS table

| Column name | Туре   | Description                                     |
|-------------|--------|-------------------------------------------------|
| lmin        | double | Lower limit of the telluric region [Angstrom]   |
| lmax        | double | Upper limit of the telluric region [Angstrom]   |
| bgmin       | double | Lower limit of the background region [Angstrom] |
| bgmax       | double | Upper limit of the background region [Angstrom] |

#### Frame tags

• TELLURIC\_REGIONS: ESO.PRO.CATG=='TELLURIC\_REGIONS' File to be used to override the internal telluric bands.



# A.1.3 Recipe Product Files

## MUSE IMAGE

### Description

A reduced CCD image of one IFU accompanied with quality and statistics information. These files follow the ESO specification for FITS files with data, bad pixel maps, and variance. The units of the extensions are given by the standard BUNIT keyword.

If the DQ extension is missing, the bad pixel status is then encoded as NaN values in the data and variance extensions.

### FITS extensions

- 'DATA': 2D FITS image (float) Data values
- 'DQ': 2D FITS image (int), optional Euro3D data quality. This information is used to propagate information about bad pixels found e. g. in the processing of dark and flat-field exposures.
- 'STAT': 2D FITS image (float) Data variance

#### Frame tags

- MASTER\_BIAS: muse bias: Master bias
- MASTER\_DARK: muse dark: Master dark
- MODEL\_DARK: muse dark: Model of the master dark (if --model=true).
- MASTER\_FLAT: muse flat: Master flat
- ARC\_RED\_LAMP: muse\_wavecal: Reduced ARC image, per lamp (if --saveimages=true)
- MASK\_REDUCED: muse\_geometry: Reduced pinhole mask images
- MASK\_COMBINED: muse geometry: Combined pinhole mask image
- SKY\_IMAGE: muse\_create\_sky: Whitelight image used to create the sky mask, muse\_scipost: Reconstructed sky image which is then used to create the SKY\_MASK (if -skymethod=model and --save contains "skymodel")
- MASTER\_AMPL: muse\_ampl: Combined master AMPL image, written if --savemaster=true



• OBJECT RED:

muse scibasic: Pre-processed CCD-based images for OBJECT input (if --saveimage=true)

- OBJECT\_RESAMPLED: muse\_scibasic: Resampled 2D image for OBJECT input (if --resample=true), muse\_scipost: Stacked image (if --save contains "stacked"), muse\_scipost\_make\_cube: Stacked image (if --stacked=true)
- STD\_RED: muse\_scibasic: Pre-processed CCD-based images for STD input (if --saveimage=true)
- STD\_RESAMPLED: muse\_scibasic: Resampled 2D image for STD input (if --resample=true)
- SKY\_RED: muse\_scibasic: Pre-processed CCD-based images for SKY input (if --saveimage=true)
- SKY\_RESAMPLED: muse\_scibasic: Resampled 2D image for SKY input (if --resample=true)
- ASTROMETRY\_RED: muse\_scibasic: Pre-processed CCD-based images for ASTROMETRY input (if --saveimage=true)
- ASTROMETRY\_RESAMPLED: muse\_scibasic: Resampled 2D image for ASTROMETRY input (if --resample=true)
- **REDUCED\_RESAMPLED**: muse\_scibasic: Resampled 2D image (if --resample=true)
- IMAGE\_FOV: muse\_scipost: Field-of-view images corresponding to the "filter" parameter., muse\_exp\_combine: Field-of-view images corresponding to the "filter" parameter (if --save con- tains "cube")., muse scipost make cube: Field-of-view images corresponding to the "filter" parameter.
- EXPOSURE\_MAP: muse\_exp\_align: Map of the total exposure time of the combined field-of-view (only if enabled).
- **PREVIEW\_FOV**: **muse\_exp\_align**: Preview image of the combined field-of-view.

### PIXEL TABLE

### Description

In the reduction approach of the MUSE pipeline, data need to be kept un-resampled until the very last step. The pixel tables used for this purpose can be saved at each intermediate reduction step and hence contain lists of pixels together with output coordinates and values.

By default, they are saved as multi-extension FITS images, where each extension corresponds to one table column. The name of the column is saved in the EXTNAME keyword, the unit in the standard BUNIT keyword.

The units evolve through the processing. The units of the spatial coordinates are "pix" at the beginning, which signifies pixels of nominal size within the MUSE field of view, relative to an approximate center. The change to "rad" units when projecting to the tangent plane of the gnomonic coordinate representation.



These are native spherical coordinates (Calabretta and Greisen, FITS WCS Paper II) and are not directly interpretable within the MUSE field of view. The final stage are in "deg" units, which signify a full astrometric calibration and each pixel is assigned relative RA and DEC in degrees. The data units change from "count" (photo electrons) to physical units during flux calibration.

In case CUNITi are available in the primary FITS header, they are used to track a spatial WCS for the construction of the reconstructed datacube, and are not to be used to interpret the data in the pixel table.

Formerly, pixel tables were written as binary FITS tables, and the MUSE pipeline can still read them for backward compatibility. In that format, the standard FITS table keywords in the table extension header are used to track column names (TTYPEi) and units (TUNITi). Reading and writing the binary table format is typically slower than the image format.

### **FITS** extensions

- 'xpos': 1D FITS image (float) x position of a pixel within the field of view [pix, rad, deg]
- 'ypos': 1D FITS image (float)
   y position of a pixel within the field of view [pix, rad, deg]
- 'lambda': 1D FITS image (float) Wavelength assigned to the pixel [Angstrom]
- 'data': 1D FITS image (float)
   Data value [count, 10\*\*(-20)\*erg/s/cm\*\*2/Angstrom]
- 'dq': 1D FITS image (int)
  32bit bad pixel status as defined by the Euro3D specification
- 'stat': 1D FITS image (float) The data variance [count\*\*2, (10\*\*(-20)\*erg/s/cm\*\*2/Angstrom)\*\*2]
- 'origin': 1D FITS image (int) Encoded value of IFU and slice number, as well as x and y position in the raw (trimmed) data
- 'weight': 1D FITS image (float) The optional relative weight of this pixel

#### Frame tags

- **PIXTABLE\_SUBTRACTED**: **muse\_lsf**: Subtracted combined pixel table, if --save\_subtracted=true. This file contains only the subtracted arc lines that contributed to the LSF calculation. There are additional columns line\_lambda and line\_flux with the reference wavelength and the estimated line flux of the corresponding arc line.
- PIXTABLE\_OBJECT: muse\_scibasic: Output pixel table for OBJECT input, muse\_scipost\_correct\_dar: DAR corrected pixel table, muse\_scipost\_calibrate\_flux: Flux calibrated pixel table, muse\_scipost\_apply\_astrometry: Pixel table with astrometric calibration



- **PIXTABLE\_STD**: **muse scibasic**: Output pixel table for STD input
- **PIXTABLE\_SKY**: **muse** scibasic: Output pixel table for SKY input
- **PIXTABLE\_ASTROMETRY**: **muse scibasic**: Output pixel table for ASTROMETRY input

# • **PIXTABLE\_REDUCED**:

muse\_scibasic: Output pixel table, muse\_scipost: Fully reduced pixel tables for each exposure (if --save contains "individual"), muse\_scipost\_raman: Output pixel table for raman subtraction., muse\_scipost\_subtract\_sky: Output pixel table(s) for sky subtraction., muse\_scipost\_subtract\_sky\_simple: Output pixel table(s) after simple sky subtraction., muse\_scipost\_correct\_rv: RV corrected pixel table

# • PIXTABLE\_POSITIONED:

**muse\_scipost**: Fully reduced and positioned pixel table for each individual exposure (if --save contains "positioned")

### • PIXTABLE COMBINED:

**muse\_scipost**: Fully reduced and combined pixel table for the full set of exposures (if --save contains "combined"),

muse\_exp\_combine: Combined pixel table (if --save contains "combined"),
muse\_scipost\_combine\_pixtables: Combined pixel table

### DATACUBE

### Description

Two FITS NAXIS=3 cubes in two extensions for data values and variance. A bad pixel is represented by a NAN value in the data and variance extensions. Such datacubes follow the ESO specification for FITS files with data, bad pixel maps, and variance. The units of the extensions are given by the standard BUNIT keyword.

They can have two-dimensional image extensions, of the same type as IMAGE\_FOV. For these, the EXTNAME will be called the same as the filter function that was used to create it. (Depending on recipe parameters, additional filtername\_STAT extensions may be present to represent the variance of the images. These images then follow the ESO specification.) If the image was created using a filter-function with known photometric zeropoints, these are propagated to the header of the output image, as DRS.MUSE.FILTER.ZPVEGA and DRS.MUSE.FILTER.ZPAB. The filter fraction DRS.MUSE.FILTER.FRACTION describes, how much of the filter area was actually covered by MUSE data (only if this is above 99%, an image should be trusted for photometry).

### FITS extensions

- 'DATA': 3D FITS image (float) Data values
- 'STAT': 3D FITS image (float) Data variance



- 2D FITS image (float), optional, may appear more than once Data values of a filtered image
- 2D FITS image (float), optional, may appear more than once Data variance of a filtered image

#### Frame tags

• GEOMETRY CUBE:

**muse\_geometry**: Cube of the field of view to check the geometry calibration. It is restricted to the wavelength range given in the parameters and contains an integrated image ("white") over this range.

- DATACUBE\_SKYFLAT: muse twilight: Cube of combined twilight skyflat exposures
- TWILIGHT\_CUBE: muse twilight: Smoothed cube of twilight sky
- DATACUBE\_STD: muse standard: Reduced standard star field exposure
- DATACUBE\_ASTROMETRY: muse astrometry: Reduced astrometry field exposure
- DATACUBE\_FINAL: muse\_scipost: Output datacube, muse\_exp\_combine: Output datacube (if --save contains "cube"), muse\_scipost\_make\_cube: Output datacube

• RAMAN IMAGES:

**muse\_scipost**: Images for Raman correction diagnostics (if an input RAMAN\_LINES was given, the instrument used AO and --save contains "raman"). Extensions are: DATA: model of the Raman light distribution in the field of view (arbitrary units), RAMAN\_IMAGE\_O2: reconstructed image in the O2 band, SKY\_MASK\_O2: sky mask used for the O2 band, RAMAN\_IMAGE\_N2: reconstructed image in the N2 band, SKY\_MASK\_N2: sky mask used for the N2 band, RAMAN\_FIT\_O2: model of Raman flux distribution in the O2 band, RAMAN\_FIT\_N2: model of Raman flux distribution in the N2 band.,

**muse\_scipost\_raman**: Images for Raman correction diagnostics (if an input RAMAN\_LINES was given, the instrument used AO and --save contains "raman"). Extensions are: DATA: model of the Raman light distribution in the field of view (arbitrary units), RAMAN\_IMAGE\_O2: reconstructed image in the O2 band, SKY\_MASK\_O2: sky mask used for the O2 band, RAMAN\_IMAGE\_N2: reconstructed image in the N2 band, SKY\_MASK\_N2: sky mask used for the N2 band, RAMAN\_FIT\_O2: model of Raman flux distribution in the O2 band, RAMAN\_FIT\_N2: model of Raman flux distribution in the N2 band.

### EURO3DCUBE

### Description

Euro3D format. See Format Definition Document, Kissler-Patig et al., Issue 1.2, May 2003, for a description.



Contrary to the examples in the Euro3D specs we use floats instead of doubles for the entries in the group table. This is because the E3D tool is otherwise not able to read the values correctly.

This data format may be written alternatively to the common DATACUBE format, if the parameter "format" is set to "Euro3D" or "xEuro3D".

### FITS extensions

• 'E3D\_DATA': FITS table

| Column name | Type        | Description                                      |
|-------------|-------------|--------------------------------------------------|
| SPEC_ID     | int         | Spectrum identifier                              |
| SELECTED    | int         | Selection flag                                   |
| NSPAX       | int         | Number of instrument spaxels composing the spec- |
|             |             | trum                                             |
| SPEC_LEN    | int         | Useful number of spectral elements [pixel]       |
| SPEC_STA    | int         | Starting wavelength of spectrum [pixel]          |
| XPOS        | double      | Horizontal position [pix]                        |
| YPOS        | double      | Vertical position [pix]                          |
| GROUP_N     | int         | Group number                                     |
| SPAX_ID     | string      | Spaxel identifier                                |
| DATA_SPE    | float array | Data spectrum                                    |
| QUAL_SPE    | int array   | Data quality spectrum                            |
| STAT_SPE    | float array | Associated statistical error spectrum            |

• 'E3D\_GRP': FITS table

| Column name | Type   | Description                                      |
|-------------|--------|--------------------------------------------------|
| GROUP_N     | int    | Group number                                     |
| G_SHAPE     | string | Spaxel shape keyword                             |
| G_SIZE1     | float  | Horizontal size per spaxel [arcsec]              |
| G_ANGLE     | float  | Angle of spaxel on the sky [deg]                 |
| G_SIZE2     | float  | Vertical size per spaxel [arcsec]                |
| G_POSWAV    | float  | Wavelength for which the WCS is valid [Angstrom] |
| G_AIRMAS    | float  | Airmass                                          |
| G_PARANG    | float  | Parallactic angle [deg]                          |
| G_PRESSU    | float  | Pressure [hPa]                                   |
| G_TEMPER    | float  | Temperature [K]                                  |
| G_HUMID     | float  | Humidity                                         |

#### Frame tags

• DATACUBE\_FINAL: muse\_scipost: Output datacube, muse\_exp\_combine: Output datacube (if --save contains "cube"), muse\_scipost\_make\_cube: Output datacube



### TRACE TABLE

### Description

This file gives the trace solution for each slice in the form of a polynomial. It is a FITS table with 48 rows, one for each slice.

### **FITS** extensions

• FITS table

| Column name | Туре   | Description                                            |
|-------------|--------|--------------------------------------------------------|
| SliceNo     | int    | Slice number                                           |
| Width       | float  | Average slice width                                    |
| tc0_ij      | double | polynomial coefficients for the central trace solution |
| MSEO        | double | mean squared error of fit (central solution)           |
| tc1_ij      | double | polynomial coefficients for the left-edge trace solu-  |
|             |        | tion                                                   |
| MSE1        | double | mean squared error of fit (left-edge solution)         |
| tc2_ij      | double | polynomial coefficients for the right-edge trace so-   |
|             |        | lution                                                 |
| MSE2        | double | mean squared error of fit (right-edge solution)        |

Frame tags

• TRACE\_TABLE: muse flat: Trace table

### TRACE SAMPLES

#### Description

This is an optional FITS table, output on request by the muse\_flat recipe. It can be used to verify the quality of the tracing, i.e. find out how accurate the pipeline was able to determine the location and boundary of the slices on the CCD.

### **FITS** extensions

• FITS table

| Column name | Туре  | Description                                        |
|-------------|-------|----------------------------------------------------|
| slice       | int   | Slice number                                       |
| У           | float | y position on the CCD [pix]                        |
| mid         | float | Midpoint of the slice at this y position [pix]     |
| left        | float | Left edge of the slice at this y position [pix]    |
| right       | float | Right edge of the slice at this y position $[pix]$ |



# • TRACE SAMPLES:

muse flat: Table containing all tracing sample points, if --samples=true

### WAVECAL\_TABLE

#### Description

This file gives the dispersion solution for each slice in one IFU. It is a FITS table with 48 rows, one for each slice.

### FITS extensions

• FITS table

| Column name | Туре   | Description                                         |
|-------------|--------|-----------------------------------------------------|
| SliceNo     | int    | Slice number                                        |
| wlcIJ       | double | Polynomial coefficients for the wavelength solution |
| MSE         | double | Mean squared error of fit                           |

### Frame tags

• WAVECAL\_TABLE: muse\_wavecal: Wavelength calibration table

# WAVECAL RESIDUALS

### Description

This is an optional FITS table, output on request by the muse\_wavecal recipe. It can be used to verify the quality of the wavelength solution.

### FITS extensions

• FITS table

| Column name | Туре   | Description                                   |
|-------------|--------|-----------------------------------------------|
| slice       | int    | Slice number                                  |
| iteration   | int    | Iteration                                     |
| x           | int    | x position on the CCD [pix]                   |
| У           | int    | y position on the CCD [pix]                   |
| lambda      | float  | Wavelength [Angstrom]                         |
| residual    | double | Residual at this point [Angstrom]             |
| rejlimit    | double | Rejection limit for this iteration [Angstrom] |

#### Frame tags

• WAVECAL\_RESIDUALS: muse\_wavecal: Fit residuals of all arc lines (if --residuals=true)



# LSF\_PROFILE

### Description

This file contains the line spread function for all slices of one IFU.

It may come in two formats: one contains a datacube with a 2D image description of the LSF per slice; the other is a table with parameters of a Gauss-Hermite parametrization.

The pipeline automatically detects the format and continues processing accordingly.

### **FITS** extensions

• 3D FITS image (float)

Data cube with the slice number (1... 48) on the z axis, the line wavelength on the y axis, and the pixel wavelength on the x axis. The coordinate transformation between pixels and wavelength on x and y axes is done via the WCS header entries. The y wavelength range usually contains the full MUSE wavelength.

• FITS table

| Column name | Туре         | Description                                     |
|-------------|--------------|-------------------------------------------------|
| ifu         | int          | IFU number                                      |
| slice       | int          | Slice number within the IFU                     |
| sensitivity | double array | Detector sensitivity, relative to the reference |
| offset      | double       | Wavelength calibration offset                   |
| refraction  | double       | Relative refraction index                       |
| slit_width  | double       | Slit width                                      |
| bin_width   | double       | Bin width                                       |
| lsf_width   | double array | LSF gauss-hermitean width                       |
| hermit3     | double array | 3th order hermitean coefficient                 |
| hermit4     | double array | 4th order hermitean coefficient                 |
| hermit5     | double array | 5th order hermitean coefficient                 |
| hermit6     | double array | 6th order hermitean coefficient                 |

Frame tags

#### • LSF PROFILE:

muse lsf: Slice specific LSF images, stacked into one data cube per IFU.

### GEOMETRY TABLE

#### Description

This file provides the relative location of each slice in the MUSE field of view. It contains one table of 24x48 = 1152 rows, one for each slice.

Other columns (e.g. columns containing errors estimates of the slice properties, xerr, yerr, ...) may be present in this table but are ignored by the MUSE pipeline.

#### FITS extensions



• FITS table

| Column name | Туре   | Description                                         |
|-------------|--------|-----------------------------------------------------|
| SubField    | int    | sub-field (IFU / channel) number                    |
| SliceCCD    | int    | Slice number on the CCD, counted from left to right |
| SliceSky    | int    | Slice number on the sky                             |
| x           | double | x position within field of view [pix]               |
| У           | double | y position within field of view [pix]               |
| angle       | double | Rotation angle of slice [deg]                       |
| width       | double | Width of slice within field of view [pix]           |

### Frame tags

- GEOMETRY\_UNSMOOTHED: muse geometry: Relative positions of the slices in the field of view (unsmoothed)
- GEOMETRY\_TABLE: muse\_geometry: Relative positions of the slices in the field of view

### $\mathbf{SPOTS}\_\mathbf{TABLE}$

#### Description

This file lists all detections and properties of all spots (the image of a pinhole at one arc line) during geometrical calibration.

It is thought to be used for debugging of the geometrical calibration.

### FITS extensions

• FITS table

| Column name | Type                 | Description                                      |
|-------------|----------------------|--------------------------------------------------|
| filename    | string               | (Raw) filename from which this measurement orig- |
|             |                      | inates                                           |
| image       | $\operatorname{int}$ | Number of the image in the series                |
| POSENC2     | $\operatorname{int}$ | X position of the mask in encoder steps          |
| POSPOS2     | double               | X position of the mask [mm]                      |
| POSENC3     | $\operatorname{int}$ | Y position of the mask in encoder steps          |
| POSPOS3     | double               | Y position of the mask [mm]                      |
| POSENC4     | $\operatorname{int}$ | Z position of the mask in encoder steps          |
| POSPOS4     | double               | Z position of the mask [mm]                      |
| VPOS        | double               | Real vertical position of the mask [mm]          |
| ScaleFOV    | double               | Focus scale in VLT focal plane (from the FITS    |
|             |                      | $\mathrm{header})$ [arcsec/mm]                   |
| SubField    | $\operatorname{int}$ | Sub-field number                                 |
| SliceCCD    | $\operatorname{int}$ | Slice number as counted on the CCD               |
| lambda      | double               | Wavelength [Angstrom]                            |
|             |                      | Continued on next page                           |



| – continued from | n previous page |                                                                          |
|------------------|-----------------|--------------------------------------------------------------------------|
| Column name      | Туре            | Description                                                              |
| SpotNo           | int             | Number of this spot within the slice $(1 \text{ is left}, 2 \text{ is})$ |
|                  |                 | the central one, 3 is right within the slice)                            |
| xc               | double          | x center of this spot on the CCD [pix]                                   |
| ус               | double          | y center of this spot on the CCD [pix]                                   |
| xfwhm            | double          | FWHM in x-direction on the CCD [pix]                                     |
| yfwhm            | double          | FWHM in y-direction on the CCD [pix]                                     |
| flux             | double          | Flux of the spot as integrated on the CCD image                          |
| bg               | double          | Background level around the spot                                         |
| dxcen            | double          | distance to center of slice at vertical position yc                      |
|                  |                 | (positive: right of center) [pix]                                        |
| twidth           | double          | trace width of the slice at the vertical CCD position                    |
|                  |                 | of the spot [pix]                                                        |

### Frame tags

• SPOTS TABLE:

**muse\_geometry**: Measurements of all detected spots on all input images.

## SKY MASK

#### Description

This can be an input and/or an output file of a pipeline recipe. It is a 2D FITS image of type integer where values of 0 are interpreted as locations of objects and a value of 1 are locations of sky.

The header of the image contains a FITS WCS which can come in two flavours:

\* It can be tied to the pixel grid defined by the GEOMETRY\_TABLE. In this case, the type is "PIXEL" and the unit is "pixel" and the resulting spatial coordinates range from -150 to +150 pixels.

\* It can be a fully defined celestial WCS, in gnomonic projection (type "--TAN" and unit "deg"). This can be used as input to give more precise sky locations as defined by external data. In this case, the user has to make sure to give any coordinate offsets using an OFFSET\_LIST valid for the exposure(s) in question.

In both cases, the pipeline only recognizes the CDi\_j matrix system of the FITS WCS system (PCi\_j cannot be used).

#### Frame tags

- SKY\_MASK: muse\_create\_sky: Created sky mask, muse\_scipost: Created sky mask (if --skymethod=model and --save contains "skymodel")
  - AUTOCAL MASK:

**muse\_scipost**: Created sky mask for autocalibration (if --autocalib=deepfield and --save contains "autocal" but no input SKY\_MASK was given)



# AUTOCAL RESULTS

### Description

This FITS table contains the results of the slice auto-calibration used for deep fields. In particular, it contains the correction factors for each wavelength range, slice, and IFU. The entries ESO.DRS.MUSE.LAMBDAi.MIN and ESO.DRS.MUSE.LAMBDAi.MAX in the FITS header of the table give the wavelength ranges used during auto- calibration for each bin.

### **FITS** extensions

• FITS table

| Column name | Type   | Description                                        |
|-------------|--------|----------------------------------------------------|
| ifu         | int    | IFU number                                         |
| sli         | int    | Slice number                                       |
| quad        | int    | Wavelength range bin number                        |
| npts        | int    | Number of points used to compute the correction    |
|             |        | factor                                             |
| corr        | double | Correction factor for the slice in this wavelength |
|             |        | range                                              |

#### Frame tags

### • AUTOCAL FACTORS:

**muse\_scipost**: Table with factors applied during autocalibration (if --autocalib=deepfield and --save contains "autocal")

### FLUX TABLE

#### Description

This is a simple binary FITS table with the dependency of the flux on wavelength.

#### FITS extensions

• FITS table

| Column name | Туре   | Description                                           |
|-------------|--------|-------------------------------------------------------|
| lambda      | double | Wavelength [Angstrom]                                 |
| flux        | double | Flux [erg/(s cm^2 arcsec^2)]                          |
| fluxerr     | double | Error of the flux (optional column) [erg/(s cm^2 arc- |
|             |        | sec^2)]                                               |

#### Frame tags

• SKY\_SPECTRUM: muse\_create\_sky: Sky spectrum within the sky mask,



**muse\_scipost**: Sky spectrum within the sky mask (if --skymethod=model and --save contains "skymodel")

### • SKY\_CONTINUUM:

muse\_create\_sky: Estimated continuum flux spectrum,

**muse\_scipost**: Estimated continuum flux spectrum (if --skymethod=model and --save contains "skymodel")

## STD RESPONSE

### Description

MUSE flux response table.

In addition to the three main columns, this table may contain additional entries related to the throughput computed from the response curve ("throughput") and estimates of the response and its error that were not smoothed ("response\_unsmoothed" and "resperr\_unsmoothed").

### FITS extensions

• FITS table

| Column name | Type   | Description                                                            |
|-------------|--------|------------------------------------------------------------------------|
| lambda      | double | wavelength [Angstrom]                                                  |
| response    | double | instrument response derived from standard star                         |
|             |        | <pre>[2.5*log10((count/s/Angstrom)/(erg/s/cm**2/Angstrom))]</pre>      |
| resperr     | double | instrument response error derived from standard                        |
|             |        | <pre>star [2.5*log10((count/s/Angstrom)/(erg/s/cm**2/Angstrom))]</pre> |

#### Frame tags

#### • STD RESPONSE:

**muse** standard: Response curve as derived from standard star(s)

### STD TELLURIC

#### Description

MUSE telluric correction table.

### FITS extensions

• FITS table

| Column name | Type   | Description                                           |
|-------------|--------|-------------------------------------------------------|
| lambda      | double | wavelength [Angstrom]                                 |
| ftelluric   | double | the telluric correction factor, normalized to an air- |
|             |        | mass of 1                                             |
| ftellerr    | double | the error of the telluric correction factor           |



### Frame tags

• STD\_TELLURIC: muse\_standard: Telluric absorption as derived from standard star(s)

# STD\_FLUXES

## Description

2D Image containing measurements of flux integration of all stars detected in a standard star field. This is mainly thought to be used for debugging. The image contains a spectral axis (axis 1) with corresponsing WCS information. Axis 2 is the arbitrary numbering of stars detected in the field. Several ESO.DRS.MUSE.FLUX.\* keywords in the output header contain information regarding each object (x and y position in the corresponding data cube, approximate celestial position, and integrated flux); their numbering corresponds to the axis 2 coordinate. Another FITS keyword (ESO.DRS.MUSE.FLUX.NSEL) gives the number of the object that was selected as standard star by the pipeline.

### FITS extensions

- 'DATA': 2D FITS image (float) Integrated fluxes per wavelength bin
- 'DQ': 2D FITS image (int), optional Corresponsing Euro3D data quality per wavelength bin
- 'STAT': 2D FITS image (float) Corresponsing data variance per wavelength bin

### Frame tags

• **STD\_FLUXES**: **muse\_standard**: The integrated flux per wavelength of all detected sources

### AMPL CONVOLVED

### Description

This FITS image contains two extensions, PHOTONS and ENERGY, showing filter-convolved values of the convolved flat-fields.

### FITS extensions

- 'PHOTONS': 2D FITS image (float) Photon counts [ph]
- 'ENERGY': 2D FITS image (float) Per-pixel energy [J]

### Frame tags

• AMPL\_CONVOLVED: muse\_ampl: Combined and convolved master AMPL image



# OFFSET LIST

### Description

Coordinate offsets suitable for being used with muse\_exp\_combine to properly align a set exposures to a reference position during the creation of a combined data cube.

The offset corrections in the RA\_OFFSET and DEC\_OFFSET columns are the direct difference of the measured position to the reference position, without cos(DEC):

 $RA_OFFSET = RA(measured) - RA(reference)$ 

 $DEC_OFFSET = DEC(measured) - DEC(reference)$ 

This table optionally also contains a FLUX\_SCALE column that is then used to correct relative scaling of exposures in a sequence, e.g. to correct observations taken in non-photometric conditions. When created by muse\_exp\_align, the table does contain the FLUX\_SCALE column. It is then filled with invalid values (NANs), so that the pipeline knows to ignore these values. The user can fill these values by hand with any FITS editor.

### **FITS** extensions

• FITS table

| Column name | Type   | Description                                        |
|-------------|--------|----------------------------------------------------|
| DATE_OBS    | string | Date and time at the start of the exposure         |
| MJD_OBS     | double | MJD at the start of the exposure (optional column) |
|             |        | [s]                                                |
| RA_OFFSET   | double | Right ascension offset in degrees [deg]            |
| DEC_OFFSET  | double | Declination offset in degrees [deg]                |
| FLUX_SCALE  | double | (Relative) flux scaling of the given exposure (op- |
|             |        | tional column)                                     |

#### Frame tags

• OFFSET LIST:

muse exp align: List of computed coordinate offsets.

### SOURCE LIST

#### Description

List of source positions detected on a MUSE field-of-view image.

#### FITS extensions

• FITS table

| Column name | Type | Description       |                        |
|-------------|------|-------------------|------------------------|
| Id          | int  | Source identifier |                        |
|             |      |                   | Continued on next page |



| – continued from previous page |        |                                                        |  |  |
|--------------------------------|--------|--------------------------------------------------------|--|--|
| Column name                    | Type   | Description                                            |  |  |
| Х                              | double | X-position of the source in image coordinates [pix]    |  |  |
| Y                              | double | Y-position of the source in image coordinates [pix]    |  |  |
| Flux                           | double | Source flux (optional column)                          |  |  |
| Sharpness                      | double | Source sharpness value (optional column)               |  |  |
| Roundness                      | double | Source roundness value (optional column)               |  |  |
| RA                             | double | Source right ascension in degrees [deg]                |  |  |
| DEC                            | double | Source declination in degrees [deg]                    |  |  |
| RA_CORR                        | double | Source right ascension in degrees corrected for field  |  |  |
|                                |        | offset (optional column) [deg]                         |  |  |
| DEC_CORR                       | double | Source declination in degrees corrected for field off- |  |  |
|                                |        | set (optional column) [deg]                            |  |  |

# Frame tags

# • SOURCE\_LIST:

muse\_exp\_align: List of parameters of the detected point sources.



# A.1.4 Other Data files

# OUTPUT WCS

### Description

Normally, the MUSE pipeline automatically adapts the output cube dimensions and sky location depending on the data. This type of file can be used to override this automatism. The first valid FITS extension with a 2D or 3D FITS WCS (so with either NAXIS or WCSAXES set to 2 or 3) is used set override parameters for the output cube.

There are, however, several restrictions:

\* The axes have to be in the order RA (1), DEC (2), wavelength (3)

\* Only support gnomonic projection spatially (TAN), and linear or log air or vaccuum wavelength sampling are supported (AWAV, AWAV-LOG, WAVE, or WAVE-LOG).

\* A tilted 3rd axis is rejected.

\* Only the primary WCS description is evaluated.

\* The WCS transformation matrix has to be in CDi\_j form (PCi\_j is not accepted).

\* Floating point WCS parameters without dots in the FITS are not recognized.

Output cubes (FITS NAXIS=3) written by the MUSE pipeline can be used as OUTPUT\_WCS.

OUTPUT\_WCS can also be used to set cube parameters that cannot be set through recipe parameters. E.g. logarithmic (standard FITS natural log) and vacuum output wavelengths can be set by adapting CRVAL3 according to the rules above.